These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37468008)

  • 1. Comparative evaluation of four Chlorella species treating mariculture wastewater under different photoperiods: Nitrogen removal performance, enzyme activity, and antioxidant response.
    Chen W; Liu J; Chu G; Wang Q; Zhang Y; Gao C; Gao M
    Bioresour Technol; 2023 Oct; 386():129511. PubMed ID: 37468008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platymonas helgolandica-driven nitrogen removal from mariculture wastewater under different photoperiods: Performance evaluation, enzyme activity and transcriptional response.
    Chu G; Wang Q; Song C; Liu J; Zhao Y; Lu S; Zhang Z; Jin C; Gao M
    Bioresour Technol; 2023 Mar; 372():128700. PubMed ID: 36738978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of light intensity on nitrogen transformation, enzymatic activity, antioxidant system and transcriptional response of Chlorella pyrenoidosa during treating mariculture wastewater.
    Lu S; Chu G; Gao C; Zhao Y; Chen W; Jin C; Wang Q; Gao M
    Bioresour Technol; 2024 Apr; 397():130465. PubMed ID: 38373503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocapture of CO₂ by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods.
    Guo P; Zhang Y; Zhao Y
    Int J Environ Res Public Health; 2018 Mar; 15(3):. PubMed ID: 29543784
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of light intensity and photoperiod on high-value production and nutrient removal performance with bacterial-algal coupling system.
    Li S; Xing D; Sun C; Jin C; Zhao Y; Gao M; Guo L
    J Environ Manage; 2024 Apr; 356():120595. PubMed ID: 38520851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling photoperiod in enhancing hydrogen production from Chlorella vulgaris sp. while bioremediating ammonium and organic pollutants in municipal wastewater.
    Ardo FM; Khoo KS; Ahmad Sobri MZ; Suparmaniam U; Ethiraj B; Anwar AF; Lam SM; Sin JC; Shahid MK; Ansar S; Ramli A; Lim JW
    Environ Pollut; 2024 Apr; 346():123648. PubMed ID: 38408504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in post treatment of dairy wastewater treatment plant effluents.
    Asadi P; Rad HA; Qaderi F
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29473-29489. PubMed ID: 31396874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide.
    Liu X; Ying K; Chen G; Zhou C; Zhang W; Zhang X; Cai Z; Holmes T; Tao Y
    Chemosphere; 2017 Nov; 186():977-985. PubMed ID: 28835006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater.
    Acebu PIG; de Luna MDG; Chen CY; Abarca RRM; Chen JH; Chang JS
    Bioresour Technol; 2022 May; 352():127086. PubMed ID: 35364235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production.
    Chen CY; Kuo EW; Nagarajan D; Ho SH; Dong CD; Lee DJ; Chang JS
    Bioresour Technol; 2020 Apr; 302():122814. PubMed ID: 32004812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of mariculture wastewater concentrations on high-value production and pollutants removal with bacterial-algal coupling reactor (BACR).
    Li S; Xing D; Sun C; Jin C; Zhao Y; Gao M; Guo L
    Bioresour Technol; 2023 Oct; 385():129410. PubMed ID: 37390931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species.
    Yu H; Kim J; Lee C
    Sci Rep; 2019 Apr; 9(1):6123. PubMed ID: 30992470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen and phosphate removal from dairy processing side-streams by monocultures or consortium of microalgae.
    Kiani H; Azimi Y; Li Y; Mousavi M; Cara F; Mulcahy S; McDonnell H; Blanco A; Halim R
    J Biotechnol; 2023 Jan; 361():1-11. PubMed ID: 36410532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling the role of ferrous ion in driving microalgae granulation from salt-tolerant strains for mariculture wastewater treatment.
    Zhao Z; Liu Y; Dong X; Jiang Q; Wang J; Yang X; Chen J; Lei Z
    Sci Total Environ; 2024 May; 923():171315. PubMed ID: 38431177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol.
    Gupta PL; Choi HJ; Lee SM
    Environ Sci Pollut Res Int; 2016 May; 23(10):10114-23. PubMed ID: 26867689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgae-based swine wastewater treatment: Strain screening, conditions optimization, physiological activity and biomass potential.
    Liu XY; Hong Y; Zhao GP; Zhang HK; Zhai QY; Wang Q
    Sci Total Environ; 2022 Feb; 807(Pt 3):151008. PubMed ID: 34662604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency.
    Shen QH; Gong YP; Fang WZ; Bi ZC; Cheng LH; Xu XH; Chen HL
    Bioresour Technol; 2015 Oct; 193():68-75. PubMed ID: 26117237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of biogenic compounds from the post-fermentation effluent in a culture of Chlorella vulgaris.
    Szwarc K; Szwarc D; Zieliński M
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):111-117. PubMed ID: 31037532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent.
    Nguyen TDP; Le TVA; Show PL; Nguyen TT; Tran MH; Tran TNT; Lee SY
    Bioresour Technol; 2019 Jan; 272():34-39. PubMed ID: 30308405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of nitrate and phosphate from simulated agricultural runoff water by Chlorella vulgaris.
    Vazirzadeh A; Jafarifard K; Ajdari A; Chisti Y
    Sci Total Environ; 2022 Jan; 802():149988. PubMed ID: 34525699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.