These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
519 related articles for article (PubMed ID: 37468584)
1. The complementarity of DDR, nucleic acids and anti-tumour immunity. Kornepati AVR; Rogers CM; Sung P; Curiel TJ Nature; 2023 Jul; 619(7970):475-486. PubMed ID: 37468584 [TBL] [Abstract][Full Text] [Related]
2. Mutations in DNA damage response pathways as a potential biomarker for immune checkpoint blockade efficacy: evidence from a seven-cancer immunotherapy cohort. Zhang W; Zhang L; Jiang H; Li Y; Wang S; Wang Q Aging (Albany NY); 2021 Nov; 13(21):24136-24154. PubMed ID: 34747718 [TBL] [Abstract][Full Text] [Related]
3. Interfaces between cellular responses to DNA damage and cancer immunotherapy. Pilger D; Seymour LW; Jackson SP Genes Dev; 2021 May; 35(9-10):602-618. PubMed ID: 33888558 [TBL] [Abstract][Full Text] [Related]
4. The developing landscape of combinatorial therapies of immune checkpoint blockade with DNA damage repair inhibitors for the treatment of breast and ovarian cancers. Zhu L; Liu J; Chen J; Zhou Q J Hematol Oncol; 2021 Dec; 14(1):206. PubMed ID: 34930377 [TBL] [Abstract][Full Text] [Related]
5. Targeting DNA Damage Response and Immune Checkpoint for Anticancer Therapy. Huang JL; Chang YT; Hong ZY; Lin CS Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328658 [TBL] [Abstract][Full Text] [Related]
6. The role of DNA damage repair (DDR) system in response to immune checkpoint inhibitor (ICI) therapy. Shi C; Qin K; Lin A; Jiang A; Cheng Q; Liu Z; Zhang J; Luo P J Exp Clin Cancer Res; 2022 Sep; 41(1):268. PubMed ID: 36071479 [TBL] [Abstract][Full Text] [Related]
7. Function and Molecular Mechanism of the DNA Damage Response in Immunity and Cancer Immunotherapy. Ye Z; Shi Y; Lees-Miller SP; Tainer JA Front Immunol; 2021; 12():797880. PubMed ID: 34970273 [TBL] [Abstract][Full Text] [Related]
8. DNA damage response and neoantigens: A favorable target for triple-negative breast cancer immunotherapy and vaccine development. Subbarayan R; Srinivasan D; Balakrishnan R; Kumar A; Usmani SS; Srivastava N Int Rev Cell Mol Biol; 2024; 389():104-152. PubMed ID: 39396845 [TBL] [Abstract][Full Text] [Related]
9. Biomarkers of Immune Checkpoint Blockade Response in Triple-Negative Breast Cancer. Isaacs J; Anders C; McArthur H; Force J Curr Treat Options Oncol; 2021 Mar; 22(5):38. PubMed ID: 33743085 [TBL] [Abstract][Full Text] [Related]
10. Role of DNA repair defects in predicting immunotherapy response. Zhang J; Shih DJH; Lin SY Biomark Res; 2020; 8():23. PubMed ID: 32612833 [TBL] [Abstract][Full Text] [Related]
11. Targeting DNA damage response and repair genes to enhance anticancer immunotherapy: rationale and clinical implication. Lamberti G; Andrini E; Sisi M; Federico AD; Ricciuti B Future Oncol; 2020 Aug; 16(23):1751-1766. PubMed ID: 32539551 [TBL] [Abstract][Full Text] [Related]
12. Diverse immune response of DNA damage repair-deficient tumors. Qing T; Jun T; Lindblad KE; Lujambio A; Marczyk M; Pusztai L; Huang KL Cell Rep Med; 2021 May; 2(5):100276. PubMed ID: 34095878 [TBL] [Abstract][Full Text] [Related]
13. A bipartite graph-based expected networks approach identifies DDR genes not associated with TMB yet predictive of immune checkpoint blockade response. Weir WH; Mucha PJ; Kim WY Cell Rep Med; 2022 May; 3(5):100602. PubMed ID: 35584624 [TBL] [Abstract][Full Text] [Related]
14. New combinatorial strategies to improve the PARP inhibitors efficacy in the urothelial bladder Cancer treatment. Criscuolo D; Morra F; Giannella R; Visconti R; Cerrato A; Celetti A J Exp Clin Cancer Res; 2019 Feb; 38(1):91. PubMed ID: 30791940 [TBL] [Abstract][Full Text] [Related]
15. Exploiting DNA repair defects in breast cancer: from chemotherapy to immunotherapy. Aktas BY; Guner G; Guven DC; Arslan C; Dizdar O Expert Rev Anticancer Ther; 2019 Jul; 19(7):589-601. PubMed ID: 31181965 [No Abstract] [Full Text] [Related]
16. Prevalence of Homologous Recombination Pathway Gene Mutations in Melanoma: Rationale for a New Targeted Therapeutic Approach. Kim KB; Soroceanu L; de Semir D; Millis SZ; Ross J; Vosoughi E; Dar AA; Nosrati M; Desprez PY; Ice R; Chen M; Chetal K; Bhattacharjee A; Moretto J; Leong SP; Singer MI; Parrett BM; Minor DR; McAllister S; Miller JR; Salomonis N; Kashani-Sabet M J Invest Dermatol; 2021 Aug; 141(8):2028-2036.e2. PubMed ID: 33610559 [TBL] [Abstract][Full Text] [Related]
17. Impact of DNA Damage Response and Repair (DDR) Gene Mutations on Efficacy of PD-(L)1 Immune Checkpoint Inhibition in Non-Small Cell Lung Cancer. Ricciuti B; Recondo G; Spurr LF; Li YY; Lamberti G; Venkatraman D; Umeton R; Cherniack AD; Nishino M; Sholl LM; Shapiro GI; Awad MM; Cheng ML Clin Cancer Res; 2020 Aug; 26(15):4135-4142. PubMed ID: 32332016 [TBL] [Abstract][Full Text] [Related]
18. Mutational Landscape and Sensitivity to Immune Checkpoint Blockers. Chabanon RM; Pedrero M; Lefebvre C; Marabelle A; Soria JC; Postel-Vinay S Clin Cancer Res; 2016 Sep; 22(17):4309-21. PubMed ID: 27390348 [TBL] [Abstract][Full Text] [Related]
19. Targeting the DNA damage response for cancer therapy. Curtin NJ Biochem Soc Trans; 2023 Feb; 51(1):207-221. PubMed ID: 36606678 [TBL] [Abstract][Full Text] [Related]
20. CHEK2 deficiency increase the response to PD-1 inhibitors by affecting the tumor immune microenvironment. Xu P; Gao Y; Jiang S; Cui Y; Xie Y; Kang Z; Chen YX; Sun D; Fang JY Cancer Lett; 2024 Apr; 588():216595. PubMed ID: 38097135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]