These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37468650)

  • 1. Acoustic tweezers for high-throughput single-cell analysis.
    Yang S; Rufo J; Zhong R; Rich J; Wang Z; Lee LP; Huang TJ
    Nat Protoc; 2023 Aug; 18(8):2441-2458. PubMed ID: 37468650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acousto-dielectric tweezers enable independent manipulation of multiple particles.
    Shen L; Tian Z; Yang K; Rich J; Zhang J; Xia J; Collyer W; Lu B; Hao N; Pei Z; Chen C; Huang TJ
    Sci Adv; 2024 Aug; 10(32):eado8992. PubMed ID: 39110808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional manipulation of single cells using surface acoustic waves.
    Guo F; Mao Z; Chen Y; Xie Z; Lata JP; Li P; Ren L; Liu J; Yang J; Dao M; Suresh S; Huang TJ
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1522-7. PubMed ID: 26811444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Beam Acoustic Tweezers for Cell Biology: Molecular to In Vivo Level.
    Yoo J; Ahn J; Ha H; Claud Jonas J; Kim C; Ham Kim H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Oct; 71(10):1269-1288. PubMed ID: 39250365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
    Ding X; Lin SC; Kiraly B; Yue H; Li S; Chiang IK; Shi J; Benkovic SJ; Huang TJ
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11105-9. PubMed ID: 22733731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bisymmetric coherent acoustic tweezers based on modulation of surface acoustic waves for dynamic and reconfigurable cluster manipulation of particles and cells.
    Pan H; Mei D; Xu C; Han S; Wang Y
    Lab Chip; 2023 Jan; 23(2):215-228. PubMed ID: 36420975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional heating and patterning dynamics of particles in microscale acoustic tweezers.
    Weser R; Deng Z; Kondalkar VV; Darinskii AN; Cierpka C; Schmidt H; König J
    Lab Chip; 2022 Jul; 22(15):2886-2901. PubMed ID: 35851398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic tweezers for the life sciences.
    Ozcelik A; Rufo J; Guo F; Gu Y; Li P; Lata J; Huang TJ
    Nat Methods; 2018 Dec; 15(12):1021-1028. PubMed ID: 30478321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.
    Chen K; Wu M; Guo F; Li P; Chan CY; Mao Z; Li S; Ren L; Zhang R; Huang TJ
    Lab Chip; 2016 Jul; 16(14):2636-43. PubMed ID: 27327102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of multiple micro-particle trapping--a simulation study.
    Yu Y; Qiu W; Chiu B; Sun L
    Sensors (Basel); 2015 Feb; 15(3):4958-74. PubMed ID: 25734646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation.
    Zhao X; Zhao N; Shi Y; Xin H; Li B
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31973061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red blood cell trapping using single-beam acoustic tweezers in the Rayleigh regime.
    Yoo J; Kim J; Lee J; Kim HH
    iScience; 2023 Nov; 26(11):108178. PubMed ID: 37915606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harmonic acoustics for dynamic and selective particle manipulation.
    Yang S; Tian Z; Wang Z; Rufo J; Li P; Mai J; Xia J; Bachman H; Huang PH; Wu M; Chen C; Lee LP; Huang TJ
    Nat Mater; 2022 May; 21(5):540-546. PubMed ID: 35332292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable motion control and trajectory manipulation of microparticles through tri-directional symmetrical acoustic tweezers.
    Wang Y; Pan H; Mei D; Xu C; Weng W
    Lab Chip; 2022 Mar; 22(6):1149-1161. PubMed ID: 35134105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging.
    Lam KH; Li Y; Li Y; Lim HG; Zhou Q; Shung KK
    Sci Rep; 2016 Nov; 6():37554. PubMed ID: 27874052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave number-spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells.
    Tian Z; Yang S; Huang PH; Wang Z; Zhang P; Gu Y; Bachman H; Chen C; Wu M; Xie Y; Huang TJ
    Sci Adv; 2019 May; 5(5):eaau6062. PubMed ID: 31172021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ring-shaped photoacoustic tweezers for single particle manipulation.
    Zhao Z; Xia J; Huang TJ; Zou J
    Opt Lett; 2022 Feb; 47(4):826-829. PubMed ID: 35167535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Beam Acoustic Tweezer Prepared by Lead-Free KNN-Based Textured Ceramics.
    Quan Y; Fei C; Ren W; Wang L; Zhao J; Zhuang J; Zhao T; Li Z; Zheng C; Sun X; Zheng K; Wang Z; Ren MX; Niu G; Zhang N; Karaki T; Jiang Z; Wen L
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-D Acoustic Tweezers Using a 2-D Matrix Array With Time-Multiplexed Traps.
    Hu Q; Ma T; Zhang Q; Wang J; Yang Y; Cai F; Zheng H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3646-3653. PubMed ID: 34280096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.