BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 37468830)

  • 1. Leveraging pre-trained language models for mining microbiome-disease relationships.
    Karkera N; Acharya S; Palaniappan SK
    BMC Bioinformatics; 2023 Jul; 24(1):290. PubMed ID: 37468830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BioGPT: generative pre-trained transformer for biomedical text generation and mining.
    Luo R; Sun L; Xia Y; Qin T; Zhang S; Poon H; Liu TY
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36156661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A large language model-based generative natural language processing framework fine-tuned on clinical notes accurately extracts headache frequency from electronic health records.
    Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I
    Headache; 2024 Apr; 64(4):400-409. PubMed ID: 38525734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
    Lee J; Yoon W; Kim S; Kim D; Kim S; So CH; Kang J
    Bioinformatics; 2020 Feb; 36(4):1234-1240. PubMed ID: 31501885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of GPT and BERT-based models on identifying proteinprotein interactions in biomedical text.
    Rehana H; Çam NB; Basmaci M; Zheng J; Jemiyo C; He Y; Özgür A; Hur J
    ArXiv; 2023 Dec; ():. PubMed ID: 38764593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Few-Shot Learning for Clinical Natural Language Processing Using Siamese Neural Networks: Algorithm Development and Validation Study.
    Oniani D; Chandrasekar P; Sivarajkumar S; Wang Y
    JMIR AI; 2023 May; 2():e44293. PubMed ID: 38875537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of improving the pre-training and fine-tuning of BERT model for biomedical relation extraction.
    Su P; Vijay-Shanker K
    BMC Bioinformatics; 2022 Apr; 23(1):120. PubMed ID: 35379166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing Pre-trained and Feature-Based Models for Prediction of Alzheimer's Disease Based on Speech.
    Balagopalan A; Eyre B; Robin J; Rudzicz F; Novikova J
    Front Aging Neurosci; 2021; 13():635945. PubMed ID: 33986655
    [No Abstract]   [Full Text] [Related]  

  • 10. Sample Size Considerations for Fine-Tuning Large Language Models for Named Entity Recognition Tasks: Methodological Study.
    Majdik ZP; Graham SS; Shiva Edward JC; Rodriguez SN; Karnes MS; Jensen JT; Barbour JB; Rousseau JF
    JMIR AI; 2024 May; 3():e52095. PubMed ID: 38875593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BactInt: A domain driven transfer learning approach for extracting inter-bacterial associations from biomedical text.
    Das Baksi K; Pokhrel V; Pudavar AE; Mande SS; Kuntal BK
    Comput Biol Chem; 2024 Apr; 109():108012. PubMed ID: 38198963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BioBERT and Similar Approaches for Relation Extraction.
    Bhasuran B
    Methods Mol Biol; 2022; 2496():221-235. PubMed ID: 35713867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Patient Populations in Texts Describing Drug Approvals Through Deep Learning-Based Information Extraction: Development of a Natural Language Processing Algorithm.
    Gendrin A; Souliotis L; Loudon-Griffiths J; Aggarwal R; Amoako D; Desouza G; Dimitrievska S; Metcalfe P; Louvet E; Sahni H
    JMIR Form Res; 2023 Jun; 7():e44876. PubMed ID: 37347514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing entity recognition in biomedicine via instruction tuning of large language models.
    Keloth VK; Hu Y; Xie Q; Peng X; Wang Y; Zheng A; Selek M; Raja K; Wei CH; Jin Q; Lu Z; Chen Q; Xu H
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38514400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Empirical Evaluation of Prompting Strategies for Large Language Models in Zero-Shot Clinical Natural Language Processing: Algorithm Development and Validation Study.
    Sivarajkumar S; Kelley M; Samolyk-Mazzanti A; Visweswaran S; Wang Y
    JMIR Med Inform; 2024 Apr; 12():e55318. PubMed ID: 38587879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug knowledge discovery via multi-task learning and pre-trained models.
    Li D; Xiong Y; Hu B; Tang B; Peng W; Chen Q
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 9):251. PubMed ID: 34789238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CONSORT-TM: Text classification models for assessing the completeness of randomized controlled trial publications.
    Jiang L; Lan M; Menke JD; Vorland CJ; Kilicoglu H
    medRxiv; 2024 Apr; ():. PubMed ID: 38633775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BERT-based Ranking for Biomedical Entity Normalization.
    Ji Z; Wei Q; Xu H
    AMIA Jt Summits Transl Sci Proc; 2020; 2020():269-277. PubMed ID: 32477646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of pre-trained language models for named entity recognition in clinical trial eligibility criteria from multiple corpora.
    Li J; Wei Q; Ghiasvand O; Chen M; Lobanov V; Weng C; Xu H
    BMC Med Inform Decis Mak; 2022 Sep; 22(Suppl 3):235. PubMed ID: 36068551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning to refine the identification of high-quality clinical research articles from the biomedical literature: Performance evaluation.
    Lokker C; Bagheri E; Abdelkader W; Parrish R; Afzal M; Navarro T; Cotoi C; Germini F; Linkins L; Haynes RB; Chu L; Iorio A
    J Biomed Inform; 2023 Jun; 142():104384. PubMed ID: 37164244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.