These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37468968)

  • 1. PINNED: identifying characteristics of druggable human proteins using an interpretable neural network.
    Cunningham M; Pins D; Dezső Z; Torrent M; Vasanthakumar A; Pandey A
    J Cheminform; 2023 Jul; 15(1):64. PubMed ID: 37468968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining global and local measures for structure-based druggability predictions.
    Volkamer A; Kuhn D; Grombacher T; Rippmann F; Rarey M
    J Chem Inf Model; 2012 Feb; 52(2):360-72. PubMed ID: 22148551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data.
    Costa PR; Acencio ML; Lemke N
    BMC Genomics; 2010 Dec; 11 Suppl 5(Suppl 5):S9. PubMed ID: 21210975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the druggability of the human proteome with eFindSite.
    Kana O; Brylinski M
    J Comput Aided Mol Des; 2019 May; 33(5):509-519. PubMed ID: 30888556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Druggability Assessment in TRAPP Using Machine Learning Approaches.
    Yuan JH; Han SB; Richter S; Wade RC; Kokh DB
    J Chem Inf Model; 2020 Mar; 60(3):1685-1699. PubMed ID: 32105476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based assessment and druggability classification of protein-protein interaction sites.
    Alzyoud L; Bryce RA; Al Sorkhy M; Atatreh N; Ghattas MA
    Sci Rep; 2022 May; 12(1):7975. PubMed ID: 35562538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network motifs modulate druggability of cellular targets.
    Wu F; Ma C; Tan C
    Sci Rep; 2016 Nov; 6():36626. PubMed ID: 27824147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening of Atherosclerotic Druggable Targets from the Proteome Network of Differentially Expressed Genes.
    Manibalan S; Harison Raj AB; Achary A
    Assay Drug Dev Technol; 2021 Jul; 19(5):290-299. PubMed ID: 34171974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of Genome-wide Understudied Proteins targeted by PROTAC-induced degradation using Interpretable Machine Learning.
    Xie L; Xie L
    bioRxiv; 2023 Feb; ():. PubMed ID: 36865212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretable Machine Learning Prediction of Drug-Induced QT Prolongation: Electronic Health Record Analysis.
    Simon ST; Trinkley KE; Malone DC; Rosenberg MA
    J Med Internet Res; 2022 Dec; 24(12):e42163. PubMed ID: 36454608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-Derived Markers of Drug Targets and Potentially Druggable Human Proteins.
    Ghadermarzi S; Li X; Li M; Kurgan L
    Front Genet; 2019; 10():1075. PubMed ID: 31803227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PockDrug: A Model for Predicting Pocket Druggability That Overcomes Pocket Estimation Uncertainties.
    Borrel A; Regad L; Xhaard H; Petitjean M; Camproux AC
    J Chem Inf Model; 2015 Apr; 55(4):882-95. PubMed ID: 25835082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins.
    Hussein HA; Borrel A; Geneix C; Petitjean M; Regad L; Camproux AC
    Nucleic Acids Res; 2015 Jul; 43(W1):W436-42. PubMed ID: 25956651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-Based Target Prioritization and Drug Candidate Identification for Multiple Sclerosis: From Analyzing "Omics Data" to Druggability Simulations.
    Yang J; Li H; Wang F; Xiao F; Yan W; Hu G
    ACS Chem Neurosci; 2021 Mar; 12(5):917-929. PubMed ID: 33565875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic Pocket Druggability Prediction
    Aguti R; Gardini E; Bertazzo M; Decherchi S; Cavalli A
    Front Pharmacol; 2022; 13():870479. PubMed ID: 35847005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The druggable genome: Twenty years later.
    Radoux CJ; Vianello F; McGreig J; Desai N; Bradley AR
    Front Bioinform; 2022; 2():958378. PubMed ID: 36304325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying druggable targets by protein microenvironments matching: application to transcription factors.
    Liu T; Altman RB
    CPT Pharmacometrics Syst Pharmacol; 2014 Jan; 3(1):e93. PubMed ID: 24452614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rupture Risk Assessment for Cerebral Aneurysm Using Interpretable Machine Learning on Multidimensional Data.
    Ou C; Liu J; Qian Y; Chong W; Zhang X; Liu W; Su H; Zhang N; Zhang J; Duan CZ; He X
    Front Neurol; 2020; 11():570181. PubMed ID: 33424738
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.