These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 3746909)
1. Calculation of the twist and the writhe for representative models of DNA. White JH; Bauer WR J Mol Biol; 1986 May; 189(2):329-41. PubMed ID: 3746909 [TBL] [Abstract][Full Text] [Related]
2. Twist and writhe of a DNA loop containing intrinsic bends. Bauer WR; Lund RA; White JH Proc Natl Acad Sci U S A; 1993 Feb; 90(3):833-7. PubMed ID: 8430093 [TBL] [Abstract][Full Text] [Related]
3. Applications of the twist difference to DNA structural analysis. White JH; Bauer WR Proc Natl Acad Sci U S A; 1988 Feb; 85(3):772-6. PubMed ID: 3422459 [TBL] [Abstract][Full Text] [Related]
4. Twist, writhe, and geometry of a DNA loop containing equally spaced coplanar bends. White JH; Lund RA; Bauer WR Biopolymers; 1996 Feb; 38(2):235-50. PubMed ID: 8589256 [TBL] [Abstract][Full Text] [Related]
5. Superhelical DNA with local substructures. A generalization of the topological constraint in terms of the intersection number and the ladder-like correspondence surface. White JH; Bauer WR J Mol Biol; 1987 May; 195(1):205-13. PubMed ID: 3656410 [TBL] [Abstract][Full Text] [Related]
6. Energetics of DNA twisting. II. Topoisomer analysis. Shore D; Baldwin RL J Mol Biol; 1983 Nov; 170(4):983-1007. PubMed ID: 6644817 [TBL] [Abstract][Full Text] [Related]
7. Terminal twist-induced writhe of DNA with intrinsic curvature. Hu K Bull Math Biol; 2007 Apr; 69(3):1019-30. PubMed ID: 17377833 [TBL] [Abstract][Full Text] [Related]
8. DNA twist as a transcriptional sensor for environmental changes. Wang JY; Syvanen M Mol Microbiol; 1992 Jul; 6(14):1861-6. PubMed ID: 1508037 [TBL] [Abstract][Full Text] [Related]
9. The effect of the superhelicity on the double helix twist angle in DNA. Belintsev BN; Gagua AV; Nedospasov SA Nucleic Acids Res; 1979 Mar; 6(3):983-92. PubMed ID: 220593 [TBL] [Abstract][Full Text] [Related]
10. Helical repeat and linking number of surface-wrapped DNA. White JH; Cozzarelli NR; Bauer WR Science; 1988 Jul; 241(4863):323-7. PubMed ID: 3388041 [TBL] [Abstract][Full Text] [Related]
11. X-ray scattering from the superhelix in circular DNA. Brady GW; Fein DB; Lambertson H; Grassian V; Foos D; Benham CJ Proc Natl Acad Sci U S A; 1983 Feb; 80(3):741-4. PubMed ID: 6572365 [TBL] [Abstract][Full Text] [Related]
12. The twist, writhe, and linking number distributions in closed circular DNA. Tobias I J Biomol Struct Dyn; 1985 Oct; 3(2):315-25. PubMed ID: 3917023 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamics of long supercoiled molecules: insights from highly efficient Monte Carlo simulations. Lepage T; Képès F; Junier I Biophys J; 2015 Jul; 109(1):135-43. PubMed ID: 26153710 [TBL] [Abstract][Full Text] [Related]
14. Monte Carlo analysis of the conformation of DNA catenanes. Vologodskii AV; Cozzarelli NR J Mol Biol; 1993 Aug; 232(4):1130-40. PubMed ID: 8371271 [TBL] [Abstract][Full Text] [Related]
15. Environmental influences on DNA superhelicity. The effect of ionic strength on superhelix conformation in solution. Brady GW; Satkowski M; Foos D; Benham CJ J Mol Biol; 1987 May; 195(1):185-91. PubMed ID: 3656409 [TBL] [Abstract][Full Text] [Related]
16. Intracellular nucleosomes constrain a DNA linking number difference of -1.26 that reconciles the Lk paradox. Segura J; Joshi RS; Díaz-Ingelmo O; Valdés A; Dyson S; Martínez-García B; Roca J Nat Commun; 2018 Sep; 9(1):3989. PubMed ID: 30266901 [TBL] [Abstract][Full Text] [Related]