These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37469275)

  • 1. A Molecular Thermodynamic Model of Coacervation in Solutions of Polycations and Oppositely Charged Micelles.
    Ghasemi M; Jamadagni SN; Johnson ES; Larson RG
    Langmuir; 2023 Aug; 39(30):10335-10351. PubMed ID: 37469275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfluorinated Alcohols Induce Complex Coacervation in Mixed Surfactants.
    Jenkins SI; Collins CM; Khaledi MG
    Langmuir; 2016 Mar; 32(10):2321-30. PubMed ID: 26881998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase behavior and molecular thermodynamics of coacervation in oppositely charged polyelectrolyte/surfactant systems: a cationic polymer JR 400 and anionic surfactant SDS mixture.
    Li D; Kelkar MS; Wagner NJ
    Langmuir; 2012 Jul; 28(28):10348-62. PubMed ID: 22769434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creation of New Functions by Combination of Surfactant and Polymer - Complex Coacervation with Oppositely Charged Polymer and Surfactant for Shampoo and Body Wash.
    Kakizawa Y; Miyake M
    J Oleo Sci; 2019 Jun; 68(6):525-539. PubMed ID: 31092801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface deposition and phase behavior of oppositely charged polyion/surfactant ion complexes. 1. Cationic guar versus cationic hydroxyethylcellulose in mixtures with anionic surfactants.
    Svensson AV; Huang L; Johnson ES; Nylander T; Piculell L
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2431-42. PubMed ID: 20356112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecularly informed field-theoretic study of the complexation of polycation PDADMA with mixed micelles of sodium dodecyl sulfate and ethoxylated surfactants.
    Nguyen M; Shen K; Sherck N; Köhler S; Gupta R; Delaney KT; Shell MS; Fredrickson GH
    Eur Phys J E Soft Matter; 2023 Sep; 46(9):75. PubMed ID: 37665423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyelectrolyte-micelle coacervates: intrapolymer-dominant vs. interpolymer-dominant association, solute uptake and rheological properties.
    Zhao M; Wang C; Jiang H; Dawadi MB; Vogt BD; Modarelli DA; Zacharia NS
    Soft Matter; 2019 Apr; 15(14):3043-3054. PubMed ID: 30901008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyelectrolyte complex coacervation by electrostatic dipolar interactions.
    Adhikari S; Leaf MA; Muthukumar M
    J Chem Phys; 2018 Oct; 149(16):163308. PubMed ID: 30384692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer Matrix Model of pH Effects in Polymeric Complex Coacervation.
    Knoerdel AR; Blocher McTigue WC; Sing CE
    J Phys Chem B; 2021 Aug; 125(31):8965-8980. PubMed ID: 34328340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex coacervation of supercharged proteins with polyelectrolytes.
    Obermeyer AC; Mills CE; Dong XH; Flores RJ; Olsen BD
    Soft Matter; 2016 Apr; 12(15):3570-81. PubMed ID: 26965053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfluoro-alcohol-induced complex coacervates of polyelectrolyte-surfactant mixtures: phase behavior and analysis.
    Nejati MM; Khaledi MG
    Langmuir; 2015 May; 31(20):5580-9. PubMed ID: 25920513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dilution induced coacervation in polyelectrolyte-micelle and polyelectrolyte-protein systems.
    Xu AY; Kizilay E; Madro SP; Vadenais JZ; McDonald KW; Dubin PL
    Soft Matter; 2018 Mar; 14(12):2391-2399. PubMed ID: 29503995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of comb architecture on complex coacervation.
    Johnston BM; Johnston CW; Letteri RA; Lytle TK; Sing CE; Emrick T; Perry SL
    Org Biomol Chem; 2017 Sep; 15(36):7630-7642. PubMed ID: 28869254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Aggregation of Ionic Surfactants Using a Smeared Charge Approximation in Dissipative Particle Dynamics Simulations.
    Mao R; Lee MT; Vishnyakov A; Neimark AV
    J Phys Chem B; 2015 Sep; 119(35):11673-83. PubMed ID: 26241704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new model to study the phase transition from microstructures to nanostructures in ionic/ionic surfactants mixture.
    Sohrabi B; Gharibi H; Javadian S; Hashemianzadeh M
    J Phys Chem B; 2007 Aug; 111(34):10069-78. PubMed ID: 17685568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuations, structure, and size inside coacervates.
    Muthukumar M
    Eur Phys J E Soft Matter; 2023 Sep; 46(9):79. PubMed ID: 37682368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A detailed assessment on the interaction of sodium alginate with a surface-active ionic liquid and a conventional surfactant: a multitechnique approach.
    Das S; Ghosh S
    Phys Chem Chem Phys; 2022 Jun; 24(22):13738-13762. PubMed ID: 35612295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of Liquid Coacervates formed by Oppositely Charged Polyelectrolytes.
    Rubinstein M; Liao Q; Panyukov S
    Macromolecules; 2018 Dec; 51(23):9572-9588. PubMed ID: 30853717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coacervation in Cationic Polyelectrolyte Solutions with Anionic Amino Acid Surfactants.
    Aramaki K; Shiozaki Y; Kosono S; Ikeda N
    J Oleo Sci; 2020 Nov; 69(11):1411-1416. PubMed ID: 33055448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cylindrical cell model for the electrostatic free energy of polyelectrolyte complexes.
    Biesheuvel PM; Stuart MA
    Langmuir; 2004 May; 20(11):4764-70. PubMed ID: 15969195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.