These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 37469518)
1. Macrophage death in atherosclerosis: potential role in calcification. Neels JG; Gollentz C; Chinetti G Front Immunol; 2023; 14():1215612. PubMed ID: 37469518 [TBL] [Abstract][Full Text] [Related]
2. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. De Meyer GRY; Zurek M; Puylaert P; Martinet W Nat Rev Cardiol; 2024 May; 21(5):312-325. PubMed ID: 38163815 [TBL] [Abstract][Full Text] [Related]
3. The Impaired Mechanism and Facilitated Therapies of Efferocytosis in Atherosclerosis. Wang Z; Su J; Gong F; Xue L; Su Z J Cardiovasc Pharmacol; 2022 Sep; 80(3):407-416. PubMed ID: 35853202 [TBL] [Abstract][Full Text] [Related]
4. The walking dead: macrophage inflammation and death in atherosclerosis. Kavurma MM; Rayner KJ; Karunakaran D Curr Opin Lipidol; 2017 Apr; 28(2):91-98. PubMed ID: 28134664 [TBL] [Abstract][Full Text] [Related]
5. Macrophage Death as a Pharmacological Target in Atherosclerosis. Martinet W; Coornaert I; Puylaert P; De Meyer GRY Front Pharmacol; 2019; 10():306. PubMed ID: 31019462 [TBL] [Abstract][Full Text] [Related]
6. Loss of MLKL (Mixed Lineage Kinase Domain-Like Protein) Decreases Necrotic Core but Increases Macrophage Lipid Accumulation in Atherosclerosis. Rasheed A; Robichaud S; Nguyen MA; Geoffrion M; Wyatt H; Cottee ML; Dennison T; Pietrangelo A; Lee R; Lagace TA; Ouimet M; Rayner KJ Arterioscler Thromb Vasc Biol; 2020 May; 40(5):1155-1167. PubMed ID: 32212851 [TBL] [Abstract][Full Text] [Related]
7. Ca Tajbakhsh A; Kovanen PT; Rezaee M; Banach M; Sahebkar A J Clin Med; 2019 Nov; 8(12):. PubMed ID: 31766552 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of efferocytosis in atherosclerosis. Shu LX; Cao LL; Guo X; Wang ZB; Wang SZ J Mol Med (Berl); 2024 Jul; 102(7):831-840. PubMed ID: 38727748 [TBL] [Abstract][Full Text] [Related]
9. Macrophage Subsets and Death Are Responsible for Atherosclerotic Plaque Formation. Li H; Cao Z; Wang L; Liu C; Lin H; Tang Y; Yao P Front Immunol; 2022; 13():843712. PubMed ID: 35432323 [TBL] [Abstract][Full Text] [Related]
10. Fang S; Sun S; Cai H; Zou X; Wang S; Hao X; Wan X; Tian J; Li Z; He Z; Huang W; Liang C; Zhang Z; Yang L; Tian J; Yu B; Sun B Theranostics; 2021; 11(19):9358-9375. PubMed ID: 34646375 [No Abstract] [Full Text] [Related]
11. Dead cell and debris clearance in the atherosclerotic plaque: Mechanisms and therapeutic opportunities to promote inflammation resolution. Dhawan UK; Singhal A; Subramanian M Pharmacol Res; 2021 Aug; 170():105699. PubMed ID: 34087352 [TBL] [Abstract][Full Text] [Related]
12. Regulation of efferocytosis by caspase-dependent apoptotic cell death in atherosclerosis. Tajbakhsh A; Kovanen PT; Rezaee M; Banach M; Moallem SA; Sahebkar A Int J Biochem Cell Biol; 2020 Mar; 120():105684. PubMed ID: 31911118 [TBL] [Abstract][Full Text] [Related]
13. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice. Thorp E; Cui D; Schrijvers DM; Kuriakose G; Tabas I Arterioscler Thromb Vasc Biol; 2008 Aug; 28(8):1421-8. PubMed ID: 18451332 [TBL] [Abstract][Full Text] [Related]
14. Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Robinson N; Ganesan R; Hegedűs C; Kovács K; Kufer TA; Virág L Redox Biol; 2019 Sep; 26():101239. PubMed ID: 31212216 [TBL] [Abstract][Full Text] [Related]
15. Two-faced Janus: the dual role of macrophages in atherosclerotic calcification. Waring OJ; Skenteris NT; Biessen EAL; Donners MMPC Cardiovasc Res; 2022 Oct; 118(13):2768-2777. PubMed ID: 34550346 [TBL] [Abstract][Full Text] [Related]
16. Constructing Mal-Efferocytic Macrophage Model and Its Atherosclerotic Spheroids and Rat Model for Therapeutic Evaluation. Zou D; Yang P; Liu J; Dai F; Xiao Y; Zhao A; Huang N Adv Biol (Weinh); 2023 Jun; 7(6):e2200277. PubMed ID: 36721069 [TBL] [Abstract][Full Text] [Related]
17. Macrophage ALDH2 (Aldehyde Dehydrogenase 2) Stabilizing Rac2 Is Required for Efferocytosis Internalization and Reduction of Atherosclerosis Development. Zhang J; Zhao X; Guo Y; Liu Z; Wei S; Yuan Q; Shang H; Sang W; Cui S; Xu T; Yang K; Guo J; Pan C; Wang J; Pang J; Han T; Chen Y; Xu F Arterioscler Thromb Vasc Biol; 2022 Jun; 42(6):700-716. PubMed ID: 35354308 [TBL] [Abstract][Full Text] [Related]
18. Mineralocorticoid Receptor Deficiency in Macrophages Inhibits Atherosclerosis by Affecting Foam Cell Formation and Efferocytosis. Shen ZX; Chen XQ; Sun XN; Sun JY; Zhang WC; Zheng XJ; Zhang YY; Shi HJ; Zhang JW; Li C; Wang J; Liu X; Duan SZ J Biol Chem; 2017 Jan; 292(3):925-935. PubMed ID: 27881672 [TBL] [Abstract][Full Text] [Related]
19. Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability. Jinnouchi H; Sato Y; Sakamoto A; Cornelissen A; Mori M; Kawakami R; Gadhoke NV; Kolodgie FD; Virmani R; Finn AV Atherosclerosis; 2020 Aug; 306():85-95. PubMed ID: 32654790 [TBL] [Abstract][Full Text] [Related]
20. CAMKIIγ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis. Doran AC; Ozcan L; Cai B; Zheng Z; Fredman G; Rymond CC; Dorweiler B; Sluimer JC; Hsieh J; Kuriakose G; Tall AR; Tabas I J Clin Invest; 2017 Nov; 127(11):4075-4089. PubMed ID: 28972541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]