BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 37469555)

  • 1. Enhancing Green Fraction Estimation in Rice and Wheat Crops: A Self-Supervised Deep Learning Semantic Segmentation Approach.
    Gao Y; Li Y; Jiang R; Zhan X; Lu H; Guo W; Yang W; Ding Y; Liu S
    Plant Phenomics; 2023; 5():0064. PubMed ID: 37469555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-Self-Supervised Learning for Semantic Segmentation in Images with Dense Patterns.
    Najafian K; Ghanbari A; Sabet Kish M; Eramian M; Shirdel GH; Stavness I; Jin L; Maleki F
    Plant Phenomics; 2023; 5():0025. PubMed ID: 36930764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Supervised Plant Phenotyping by Combining Domain Adaptation with 3D Plant Model Simulations: Application to Wheat Leaf Counting at Seedling Stage.
    Li Y; Zhan X; Liu S; Lu H; Jiang R; Guo W; Chapman S; Ge Y; Solan B; Ding Y; Baret F
    Plant Phenomics; 2023; 5():0041. PubMed ID: 37223315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The NWRD Dataset: An Open-Source Annotated Segmentation Dataset of Diseased Wheat Crop.
    Anwar H; Khan SU; Ghaffar MM; Fayyaz M; Khan MJ; Weis C; Wehn N; Shafait F
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing Macro Disease Index of Wheat Stripe Rust Based on Segformer with Complex Background in the Field.
    Deng J; Lv X; Yang L; Zhao B; Zhou C; Yang Z; Jiang J; Ning N; Zhang J; Shi J; Ma Z
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An image registration-based self-supervised Su-Net for carotid plaque ultrasound image segmentation.
    Ding J; Zhou R; Fang X; Wang F; Wang J; Gan H; Fenster A
    Comput Methods Programs Biomed; 2024 Feb; 244():107957. PubMed ID: 38061113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and analysis of wheat spikes using Convolutional Neural Networks.
    Hasan MM; Chopin JP; Laga H; Miklavcic SJ
    Plant Methods; 2018; 14():100. PubMed ID: 30459822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature-enhanced adversarial semi-supervised semantic segmentation network for pulmonary embolism annotation.
    Cheng TW; Chua YW; Huang CC; Chang J; Kuo C; Cheng YC
    Heliyon; 2023 May; 9(5):e16060. PubMed ID: 37215788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning Deep Representations of Cardiac Structures for 4D Cine MRI Image Segmentation through Semi-Supervised Learning.
    Hasan SMK; Linte CA
    Appl Sci (Basel); 2022 Dec; 12(23):. PubMed ID: 37125242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Copy Paste and Semantic Segmentation-Based Approach for the Classification and Assessment of Significant Rice Diseases.
    Li Z; Chen P; Shuai L; Wang M; Zhang L; Wang Y; Mu J
    Plants (Basel); 2022 Nov; 11(22):. PubMed ID: 36432903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid Cycle GAN-based lightweight road perception pipeline for road dataset generation for Urban mobility.
    Rajagopal BG; Kumar M; Alshehri AH; Alanazi F; Deifalla AF; Yosri AM; Azam A
    PLoS One; 2023; 18(11):e0293978. PubMed ID: 38032941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the Influence of Label Image Accuracy on the Performance of Concrete Crack Segmentation Network Models.
    Ma K; Hao M; Shang W; Liu J; Meng J; Hu Q; He P; Li S
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging.
    Misra T; Arora A; Marwaha S; Chinnusamy V; Rao AR; Jain R; Sahoo RN; Ray M; Kumar S; Raju D; Jha RR; Nigam A; Goel S
    Plant Methods; 2020; 16():40. PubMed ID: 32206080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SegVeg: Segmenting RGB Images into Green and Senescent Vegetation by Combining Deep and Shallow Methods.
    Serouart M; Madec S; David E; Velumani K; Lopez Lozano R; Weiss M; Baret F
    Plant Phenomics; 2022; 2022():9803570. PubMed ID: 36451876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-Image Pixel Contrasting for Semantic Segmentation.
    Zhou T; Wang W
    IEEE Trans Pattern Anal Mach Intell; 2024 Feb; PP():. PubMed ID: 38386572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bagging Improves the Performance of Deep Learning-Based Semantic Segmentation with Limited Labeled Images: A Case Study of Crop Segmentation for High-Throughput Plant Phenotyping.
    Zhan Y; Zhou Y; Bai G; Ge Y
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant Root Phenotyping Using Deep Conditional GANs and Binary Semantic Segmentation.
    Thesma V; Mohammadpour Velni J
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.