These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 37469685)
1. Diffusion-free valve for preprogrammed immunoassay with capillary microfluidics. Azizian P; Casals-Terré J; Ricart J; Cabot JM Microsyst Nanoeng; 2023; 9():91. PubMed ID: 37469685 [TBL] [Abstract][Full Text] [Related]
2. The dynamics of capillary flow in an open-channel system featuring trigger valves. Tokihiro JC; Robertson IH; Gregucci D; Shin A; Michelini E; Nicholson TM; Olanrewaju A; Theberge AB; Berthier J; Berthier E bioRxiv; 2024 Nov; ():. PubMed ID: 39345588 [TBL] [Abstract][Full Text] [Related]
3. Coupling Capillary-Driven Microfluidics with Lateral Flow Immunoassay for Signal Enhancement. Azizian P; Casals-Terré J; Guerrero-SanVicente E; Grinyte R; Ricart J; Cabot JM Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622918 [TBL] [Abstract][Full Text] [Related]
4. A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction. Zhang Y; Li Y; Luan X; Li X; Jiang J; Fan Y; Li M; Huang C; Zhang L; Zhao Y Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671861 [TBL] [Abstract][Full Text] [Related]
5. Capillary-driven microfluidics: impacts of 3D manufacturing on bioanalytical devices. Azizian P; Casals-Terré J; Ricart J; Cabot JM Analyst; 2023 Jun; 148(12):2657-2675. PubMed ID: 37166188 [TBL] [Abstract][Full Text] [Related]
7. Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms. Peshin S; George D; Shiri R; Kulinsky L; Madou M Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208427 [TBL] [Abstract][Full Text] [Related]
8. New flow control systems in capillarics: off valves. Menges J; Meffan C; Dolamore F; Fee C; Dobson R; Nock V Lab Chip; 2021 Jan; 21(1):205-214. PubMed ID: 33295906 [TBL] [Abstract][Full Text] [Related]
9. On-Line Dual-Active Valves Based Centrifugal Microfluidic Chip for Fully Automated Point-of-Care Immunoassay. Qian C; Wan C; Li S; Xiao Y; Yuan H; Gao S; Wu L; Zhou M; Feng X; Li Y; Chen P; Liu BF Anal Chem; 2023 Aug; 95(33):12521-12531. PubMed ID: 37556853 [TBL] [Abstract][Full Text] [Related]
10. Portable all-in-one automated microfluidic system (PAMICON) with 3D-printed chip using novel fluid control mechanism. Zhang Y; Tseng TM; Schlichtmann U Sci Rep; 2021 Sep; 11(1):19189. PubMed ID: 34584118 [TBL] [Abstract][Full Text] [Related]
11. Study on Functionality and Surface Modification of a Stair-Step Liquid-Triggered Valve for On-Chip Flow Control. Chen X; Chen S; Zhang Y; Yang H Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32708757 [TBL] [Abstract][Full Text] [Related]
12. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate" Process. Temiz Y; Delamarche E Methods Mol Biol; 2017; 1547():25-36. PubMed ID: 28044284 [TBL] [Abstract][Full Text] [Related]
13. 3D-Printed Microfluidic One-Way Valves and Pumps. Hinnen H; Viglione M; Munro TR; Woolley AT; Nordin GP Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512597 [TBL] [Abstract][Full Text] [Related]
14. Towards plug and play filling of microfluidic devices by utilizing networks of capillary stop valves. Hagmeyer B; Zechnall F; Stelzle M Biomicrofluidics; 2014 Sep; 8(5):056501. PubMed ID: 25332747 [TBL] [Abstract][Full Text] [Related]
15. Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary. Lan D; Shang Y; Su H; Liang M; Liu Y; Li H; Feng Q; Cao X; Dong H ACS Biomater Sci Eng; 2021 Oct; 7(10):4971-4981. PubMed ID: 34503336 [TBL] [Abstract][Full Text] [Related]
16. The effect of contact angles and capillary dimensions on the burst frequency of super hydrophilic and hydrophilic centrifugal microfluidic platforms, a CFD study. Kazemzadeh A; Ganesan P; Ibrahim F; He S; Madou MJ PLoS One; 2013; 8(9):e73002. PubMed ID: 24069169 [TBL] [Abstract][Full Text] [Related]
17. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Olanrewaju A; Beaugrand M; Yafia M; Juncker D Lab Chip; 2018 Aug; 18(16):2323-2347. PubMed ID: 30010168 [TBL] [Abstract][Full Text] [Related]
18. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements. Safavieh R; Juncker D Lab Chip; 2013 Nov; 13(21):4180-9. PubMed ID: 23978958 [TBL] [Abstract][Full Text] [Related]
19. Digital Manufacturing of Functional Ready-to-Use Microfluidic Systems. Karamzadeh V; Sohrabi-Kashani A; Shen M; Juncker D Adv Mater; 2023 Nov; 35(47):e2303867. PubMed ID: 37531202 [TBL] [Abstract][Full Text] [Related]