BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37470216)

  • 1. Nicotinamide Adenine Dinucleotide Phosphate Oxidase Promotes Glioblastoma Radiation Resistance in a Phosphate and Tensin Homolog-Dependent Manner.
    Ludwig K; Le Belle JE; Muthukrishnan SD; Sperry J; Condro M; Vlashi E; Pajonk F; Kornblum HI
    Antioxid Redox Signal; 2023 Nov; 39(13-15):890-903. PubMed ID: 37470216
    [No Abstract]   [Full Text] [Related]  

  • 2. NADPH oxidase subunit 4-mediated reactive oxygen species contribute to cycling hypoxia-promoted tumor progression in glioblastoma multiforme.
    Hsieh CH; Shyu WC; Chiang CY; Kuo JW; Shen WC; Liu RS
    PLoS One; 2011; 6(9):e23945. PubMed ID: 21935366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotinamide Adenosine Dinucleotide Phosphate Oxidase-Mediated Signaling in Cardiac Remodeling.
    Visnagri A; Oexner RR; Kmiotek-Wasylewska K; Zhang M; Zoccarato A; Shah AM
    Antioxid Redox Signal; 2023 Feb; 38(4-6):371-387. PubMed ID: 36656669
    [No Abstract]   [Full Text] [Related]  

  • 4. MicroRNA Targeting Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Cancer.
    Kushwaha PP; Gupta S; Singh AK; Prajapati KS; Shuaib M; Kumar S
    Antioxid Redox Signal; 2020 Feb; 32(5):267-284. PubMed ID: 31656079
    [No Abstract]   [Full Text] [Related]  

  • 5. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent.
    Aoyama T; Paik YH; Watanabe S; Laleu B; Gaggini F; Fioraso-Cartier L; Molango S; Heitz F; Merlot C; Szyndralewiez C; Page P; Brenner DA
    Hepatology; 2012 Dec; 56(6):2316-27. PubMed ID: 22806357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species production has a critical role in hypoxia-induced Stat3 activation and angiogenesis in human glioblastoma.
    Yu MO; Park KJ; Park DH; Chung YG; Chi SG; Kang SH
    J Neurooncol; 2015 Oct; 125(1):55-63. PubMed ID: 26297045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetraarsenic oxide-induced inhibition of malignant glioma cell invasion in vitro via a decrease in matrix metalloproteinase secretion and protein kinase B phosphorylation.
    Gwak HS; Park MJ; Park IC; Woo SH; Jin HO; Rhee CH; Jung HW
    J Neurosurg; 2014 Dec; 121(6):1483-91. PubMed ID: 25303017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases.
    Lambeth JD
    Curr Opin Hematol; 2002 Jan; 9(1):11-7. PubMed ID: 11753072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH oxidase subunit 4 mediates cycling hypoxia-promoted radiation resistance in glioblastoma multiforme.
    Hsieh CH; Wu CP; Lee HT; Liang JA; Yu CY; Lin YJ
    Free Radic Biol Med; 2012 Aug; 53(4):649-58. PubMed ID: 22713363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of phosphoinositide 3-kinase and p38 mitogen-activated protein kinase signal pathways is required for lipopolysaccharide-induced microglial phagocytosis.
    Sun HN; Kim SU; Lee MS; Kim SK; Kim JM; Yim M; Yu DY; Lee DS
    Biol Pharm Bull; 2008 Sep; 31(9):1711-5. PubMed ID: 18758064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and liver fibrosis: A review.
    Mortezaee K
    Cell Biochem Funct; 2018 Aug; 36(6):292-302. PubMed ID: 30028028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells.
    Rathore R; Zheng YM; Niu CF; Liu QH; Korde A; Ho YS; Wang YX
    Free Radic Biol Med; 2008 Nov; 45(9):1223-31. PubMed ID: 18638544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation.
    Diaz B; Shani G; Pass I; Anderson D; Quintavalle M; Courtneidge SA
    Sci Signal; 2009 Sep; 2(88):ra53. PubMed ID: 19755709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH oxidase expression and production of superoxide by human corneal stromal cells.
    O'Brien WJ; Heimann T; Rizvi F
    Mol Vis; 2009 Dec; 15():2535-43. PubMed ID: 19997580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADPH oxidase-generated reactive oxygen species are required for stromal cell-derived factor-1α-stimulated angiogenesis.
    Pi X; Xie L; Portbury AL; Kumar S; Lockyer P; Li X; Patterson C
    Arterioscler Thromb Vasc Biol; 2014 Sep; 34(9):2023-32. PubMed ID: 24990230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The downregulation of NADPH oxidase Nox4 during hypoxia in hemangioendothelioma cells: a possible role of p22
    Miyano K; Okamoto S; Yamauchi A; Kawai C; Kajikawa M; Kiyohara T; Itsumi M; Taura M; Kuribayashi F
    Free Radic Res; 2021 Oct; 55(9-10):996-1004. PubMed ID: 35012414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH oxidase-derived reactive oxygen species mediate decidualization of human endometrial stromal cells in response to cyclic AMP signaling.
    Al-Sabbagh M; Fusi L; Higham J; Lee Y; Lei K; Hanyaloglu AC; Lam EW; Christian M; Brosens JJ
    Endocrinology; 2011 Feb; 152(2):730-40. PubMed ID: 21159852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH Oxidases in the Central Nervous System: Regional and Cellular Localization and the Possible Link to Brain Diseases.
    Fang J; Sheng R; Qin ZH
    Antioxid Redox Signal; 2021 Oct; 35(12):951-973. PubMed ID: 34293949
    [No Abstract]   [Full Text] [Related]  

  • 19. Salusin-β Promotes Vascular Calcification
    Sun H; Zhang F; Xu Y; Sun S; Wang H; Du Q; Gu C; Black SM; Han Y; Tang H
    Antioxid Redox Signal; 2019 Dec; 31(18):1352-1370. PubMed ID: 31578871
    [No Abstract]   [Full Text] [Related]  

  • 20. Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to Toll-like receptor 5 signaling in large intestinal epithelial cells.
    Kawahara T; Kuwano Y; Teshima-Kondo S; Takeya R; Sumimoto H; Kishi K; Tsunawaki S; Hirayama T; Rokutan K
    J Immunol; 2004 Mar; 172(5):3051-8. PubMed ID: 14978110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.