BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37470313)

  • 1. Insights into the Diffusion Behaviors of Water over Hydrophilic/Hydrophobic Catalysts During the Conversion of Syngas to High-Quality Gasoline.
    Xu Y; Liang H; Li R; Zhang Z; Qin C; Xu D; Fan H; Hou B; Wang J; Gu XK; Ding M
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202306786. PubMed ID: 37470313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxide-Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond Fischer-Tropsch Synthesis.
    Pan X; Jiao F; Miao D; Bao X
    Chem Rev; 2021 Jun; 121(11):6588-6609. PubMed ID: 34032417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO
    Zhou W; Cheng K; Kang J; Zhou C; Subramanian V; Zhang Q; Wang Y
    Chem Soc Rev; 2019 Jun; 48(12):3193-3228. PubMed ID: 31106785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic confinement of SAPO-17 cages on the selectivity control of syngas conversion.
    Wang H; Jiao F; Ding Y; Liu W; Xu Z; Pan X; Bao X
    Natl Sci Rev; 2022 Sep; 9(9):nwac146. PubMed ID: 36128451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct conversion of CO
    Gao P; Li S; Bu X; Dang S; Liu Z; Wang H; Zhong L; Qiu M; Yang C; Cai J; Wei W; Sun Y
    Nat Chem; 2017 Oct; 9(10):1019-1024. PubMed ID: 28937667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Selectivity to Aromatics by a Mg and Na Co-modified Catalyst in Direct Conversion of Syngas.
    Yang S; Li M; Nawaz MA; Song G; Xiao W; Wang Z; Liu D
    ACS Omega; 2020 May; 5(20):11701-11709. PubMed ID: 32478261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products.
    Xu Y; Li X; Gao J; Wang J; Ma G; Wen X; Yang Y; Li Y; Ding M
    Science; 2021 Feb; 371(6529):610-613. PubMed ID: 33542132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Na-modified Fe@C core-shell catalyst for the enhanced production of gasoline-range hydrocarbons
    Ma G; Xu Y; Wang J; Bai J; Du Y; Zhang J; Ding M
    RSC Adv; 2020 Mar; 10(18):10723-10730. PubMed ID: 35492905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity.
    Zhang Q; Cheng K; Kang J; Deng W; Wang Y
    ChemSusChem; 2014 May; 7(5):1251-64. PubMed ID: 24339240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Quality Gasoline Directly from Syngas by Dual Metal Oxide-Zeolite (OX-ZEO) Catalysis.
    Li N; Jiao F; Pan X; Chen Y; Feng J; Li G; Bao X
    Angew Chem Int Ed Engl; 2019 May; 58(22):7400-7404. PubMed ID: 30945413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO
    Das S; Pérez-Ramírez J; Gong J; Dewangan N; Hidajat K; Gates BC; Kawi S
    Chem Soc Rev; 2020 May; 49(10):2937-3004. PubMed ID: 32407432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in Co
    Yu F; Lin T; An Y; Gong K; Wang X; Sun Y; Zhong L
    Chem Commun (Camb); 2022 Aug; 58(70):9712-9727. PubMed ID: 35972448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directly Converting Syngas to Linear α-Olefins over Core-Shell Fe
    Wang J; Xu Y; Ma G; Lin J; Wang H; Zhang C; Ding M
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43578-43587. PubMed ID: 30484308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins
    Liu X; Zhou W; Yang Y; Cheng K; Kang J; Zhang L; Zhang G; Min X; Zhang Q; Wang Y
    Chem Sci; 2018 May; 9(20):4708-4718. PubMed ID: 29899966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Direct Synthesis of Value-Added Aromatic Chemicals from Syngas by Cascade Reactions over Bifunctional Catalysts.
    Kasipandi S; Bae JW
    Adv Mater; 2019 Aug; 31(34):e1803390. PubMed ID: 30767328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer-Tropsch Synthesis and Reductive Hydroformylation.
    Jeske K; Rösler T; Belleflamme M; Rodenas T; Fischer N; Claeys M; Leitner W; Vorholt AJ; Prieto G
    Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202201004. PubMed ID: 35491237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity.
    Lin T; Yu F; An Y; Qin T; Li L; Gong K; Zhong L; Sun Y
    Acc Chem Res; 2021 Apr; 54(8):1961-1971. PubMed ID: 33599477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Cobalt Fischer-Tropsch Catalysts for the Combined Production of Liquid Fuels and Olefin Chemicals from Hydrogen-Rich Syngas.
    Jeske K; Kizilkaya AC; López-Luque I; Pfänder N; Bartsch M; Concepción P; Prieto G
    ACS Catal; 2021 Apr; 11(8):4784-4798. PubMed ID: 33889436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO
    Su J; Zhou H; Liu S; Wang C; Jiao W; Wang Y; Liu C; Ye Y; Zhang L; Zhao Y; Liu H; Wang D; Yang W; Xie Z; He M
    Nat Commun; 2019 Mar; 10(1):1297. PubMed ID: 30899003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas.
    He J; Liu Z; Yoneyama Y; Nishiyama N; Tsubaki N
    Chemistry; 2006 Nov; 12(32):8296-304. PubMed ID: 16850512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.