These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37470313)

  • 1. Insights into the Diffusion Behaviors of Water over Hydrophilic/Hydrophobic Catalysts During the Conversion of Syngas to High-Quality Gasoline.
    Xu Y; Liang H; Li R; Zhang Z; Qin C; Xu D; Fan H; Hou B; Wang J; Gu XK; Ding M
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202306786. PubMed ID: 37470313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxide-Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond Fischer-Tropsch Synthesis.
    Pan X; Jiao F; Miao D; Bao X
    Chem Rev; 2021 Jun; 121(11):6588-6609. PubMed ID: 34032417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO
    Zhou W; Cheng K; Kang J; Zhou C; Subramanian V; Zhang Q; Wang Y
    Chem Soc Rev; 2019 Jun; 48(12):3193-3228. PubMed ID: 31106785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic confinement of SAPO-17 cages on the selectivity control of syngas conversion.
    Wang H; Jiao F; Ding Y; Liu W; Xu Z; Pan X; Bao X
    Natl Sci Rev; 2022 Sep; 9(9):nwac146. PubMed ID: 36128451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct conversion of CO
    Gao P; Li S; Bu X; Dang S; Liu Z; Wang H; Zhong L; Qiu M; Yang C; Cai J; Wei W; Sun Y
    Nat Chem; 2017 Oct; 9(10):1019-1024. PubMed ID: 28937667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Selectivity to Aromatics by a Mg and Na Co-modified Catalyst in Direct Conversion of Syngas.
    Yang S; Li M; Nawaz MA; Song G; Xiao W; Wang Z; Liu D
    ACS Omega; 2020 May; 5(20):11701-11709. PubMed ID: 32478261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products.
    Xu Y; Li X; Gao J; Wang J; Ma G; Wen X; Yang Y; Li Y; Ding M
    Science; 2021 Feb; 371(6529):610-613. PubMed ID: 33542132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Na-modified Fe@C core-shell catalyst for the enhanced production of gasoline-range hydrocarbons
    Ma G; Xu Y; Wang J; Bai J; Du Y; Zhang J; Ding M
    RSC Adv; 2020 Mar; 10(18):10723-10730. PubMed ID: 35492905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity.
    Zhang Q; Cheng K; Kang J; Deng W; Wang Y
    ChemSusChem; 2014 May; 7(5):1251-64. PubMed ID: 24339240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Quality Gasoline Directly from Syngas by Dual Metal Oxide-Zeolite (OX-ZEO) Catalysis.
    Li N; Jiao F; Pan X; Chen Y; Feng J; Li G; Bao X
    Angew Chem Int Ed Engl; 2019 May; 58(22):7400-7404. PubMed ID: 30945413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO
    Das S; Pérez-Ramírez J; Gong J; Dewangan N; Hidajat K; Gates BC; Kawi S
    Chem Soc Rev; 2020 May; 49(10):2937-3004. PubMed ID: 32407432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in Co
    Yu F; Lin T; An Y; Gong K; Wang X; Sun Y; Zhong L
    Chem Commun (Camb); 2022 Aug; 58(70):9712-9727. PubMed ID: 35972448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directly Converting Syngas to Linear α-Olefins over Core-Shell Fe
    Wang J; Xu Y; Ma G; Lin J; Wang H; Zhang C; Ding M
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43578-43587. PubMed ID: 30484308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins
    Liu X; Zhou W; Yang Y; Cheng K; Kang J; Zhang L; Zhang G; Min X; Zhang Q; Wang Y
    Chem Sci; 2018 May; 9(20):4708-4718. PubMed ID: 29899966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Direct Synthesis of Value-Added Aromatic Chemicals from Syngas by Cascade Reactions over Bifunctional Catalysts.
    Kasipandi S; Bae JW
    Adv Mater; 2019 Aug; 31(34):e1803390. PubMed ID: 30767328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer-Tropsch Synthesis and Reductive Hydroformylation.
    Jeske K; Rösler T; Belleflamme M; Rodenas T; Fischer N; Claeys M; Leitner W; Vorholt AJ; Prieto G
    Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202201004. PubMed ID: 35491237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity.
    Lin T; Yu F; An Y; Qin T; Li L; Gong K; Zhong L; Sun Y
    Acc Chem Res; 2021 Apr; 54(8):1961-1971. PubMed ID: 33599477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Cobalt Fischer-Tropsch Catalysts for the Combined Production of Liquid Fuels and Olefin Chemicals from Hydrogen-Rich Syngas.
    Jeske K; Kizilkaya AC; López-Luque I; Pfänder N; Bartsch M; Concepción P; Prieto G
    ACS Catal; 2021 Apr; 11(8):4784-4798. PubMed ID: 33889436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO
    Su J; Zhou H; Liu S; Wang C; Jiao W; Wang Y; Liu C; Ye Y; Zhang L; Zhao Y; Liu H; Wang D; Yang W; Xie Z; He M
    Nat Commun; 2019 Mar; 10(1):1297. PubMed ID: 30899003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas.
    He J; Liu Z; Yoneyama Y; Nishiyama N; Tsubaki N
    Chemistry; 2006 Nov; 12(32):8296-304. PubMed ID: 16850512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.