These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Stringlis IA; Proietti S; Hickman R; Van Verk MC; Zamioudis C; Pieterse CMJ Plant J; 2018 Jan; 93(1):166-180. PubMed ID: 29024173 [TBL] [Abstract][Full Text] [Related]
3. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions. Verbon EH; Liberman LM; Zhou J; Yin J; Pieterse CMJ; Benfey PN; Stringlis IA; de Jonge R Mol Plant; 2023 Jul; 16(7):1160-1177. PubMed ID: 37282370 [TBL] [Abstract][Full Text] [Related]
4. Rhizobacteria-Mediated Activation of the Fe Deficiency Response in Arabidopsis Roots: Impact on Fe Status and Signaling. Verbon EH; Trapet PL; Kruijs S; Temple-Boyer-Dury C; Rouwenhorst TG; Pieterse CMJ Front Plant Sci; 2019; 10():909. PubMed ID: 31354776 [TBL] [Abstract][Full Text] [Related]
5. A salicylic acid-associated plant-microbe interaction attracts beneficial Flavobacterium sp. to the Arabidopsis thaliana phyllosphere. Sommer A; Wenig M; Knappe C; Kublik S; Foesel BU; Schloter M; Vlot AC Physiol Plant; 2024; 176(4):e14483. PubMed ID: 39169536 [TBL] [Abstract][Full Text] [Related]
7. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. Zamioudis C; Hanson J; Pieterse CM New Phytol; 2014 Oct; 204(2):368-79. PubMed ID: 25138267 [TBL] [Abstract][Full Text] [Related]
8. Beneficial rhizobacteria Pseudomonas simiae WCS417 induce major transcriptional changes in plant sugar transport. Desrut A; Moumen B; Thibault F; Le Hir R; Coutos-Thévenot P; Vriet C J Exp Bot; 2020 Dec; 71(22):7301-7315. PubMed ID: 32860502 [TBL] [Abstract][Full Text] [Related]
9. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Stringlis IA; Yu K; Feussner K; de Jonge R; Van Bentum S; Van Verk MC; Berendsen RL; Bakker PAHM; Feussner I; Pieterse CMJ Proc Natl Acad Sci U S A; 2018 May; 115(22):E5213-E5222. PubMed ID: 29686086 [TBL] [Abstract][Full Text] [Related]
10. Rhizosphere-Associated Pseudomonas Suppress Local Root Immune Responses by Gluconic Acid-Mediated Lowering of Environmental pH. Yu K; Liu Y; Tichelaar R; Savant N; Lagendijk E; van Kuijk SJL; Stringlis IA; van Dijken AJH; Pieterse CMJ; Bakker PAHM; Haney CH; Berendsen RL Curr Biol; 2019 Nov; 29(22):3913-3920.e4. PubMed ID: 31668625 [TBL] [Abstract][Full Text] [Related]
11. Plant growth-promoting rhizobacterium Pseudomonas sp. CM11 specifically induces lateral roots. Li Q; Li H; Yang Z; Cheng X; Zhao Y; Qin L; Bisseling T; Cao Q; Willemsen V New Phytol; 2022 Aug; 235(4):1575-1588. PubMed ID: 35510807 [TBL] [Abstract][Full Text] [Related]
12. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle. Léon-Kloosterziel KM; Verhagen BW; Keurentjes JJ; VanPelt JA; Rep M; VanLoon LC; Pieterse CM Plant Mol Biol; 2005 Mar; 57(5):731-48. PubMed ID: 15988566 [TBL] [Abstract][Full Text] [Related]
13. Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Kwon YS; Lee DY; Rakwal R; Baek SB; Lee JH; Kwak YS; Seo JS; Chung WS; Bae DW; Kim SG Proteomics; 2016 Jan; 16(1):122-35. PubMed ID: 26460066 [TBL] [Abstract][Full Text] [Related]
15. Isolation of AtNUDT5 gene promoter and characterization of its activity in transgenic Arabidopsis thaliana. Zhang XC; Li MY; Ruan MB; Xia YJ; Wu KX; Peng M Appl Biochem Biotechnol; 2013 Mar; 169(5):1557-65. PubMed ID: 23322251 [TBL] [Abstract][Full Text] [Related]
16. Does drought stress modify the effects of plant-growth promoting rhizobacteria on an aboveground chewing herbivore? de Bobadilla MF; Friman J; Pangesti N; Dicke M; van Loon JJA; Pineda A Insect Sci; 2017 Dec; 24(6):1034-1044. PubMed ID: 28498521 [TBL] [Abstract][Full Text] [Related]
17. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway. Chen L; Dodd IC; Theobald JC; Belimov AA; Davies WJ J Exp Bot; 2013 Apr; 64(6):1565-73. PubMed ID: 23404897 [TBL] [Abstract][Full Text] [Related]
18. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Wintermans PC; Bakker PA; Pieterse CM Plant Mol Biol; 2016 Apr; 90(6):623-34. PubMed ID: 26830772 [TBL] [Abstract][Full Text] [Related]
19. Factors other than root secreted malic acid that contributes toward Bacillus subtilis FB17 colonization on Arabidopsis roots. Lakshmanan V; Bais HP Plant Signal Behav; 2013 Nov; 8(11):e27277. PubMed ID: 24310121 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation. Soto-Suárez M; Serrato AJ; Rojas-González JA; Bautista R; Sahrawy M BMC Plant Biol; 2016 Dec; 16(1):258. PubMed ID: 27905870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]