BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 37470814)

  • 1. Leveraging the third dimension in microfluidic devices using 3D printing: no longer just scratching the surface.
    Pradela Filho LA; Paixão TRLC; Nordin GP; Woolley AT
    Anal Bioanal Chem; 2024 Apr; 416(9):2031-2037. PubMed ID: 37470814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing in biotechnology-An insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics.
    Heuer C; Preuß JA; Habib T; Enders A; Bahnemann J
    Eng Life Sci; 2022 Dec; 22(12):744-759. PubMed ID: 36514534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional-printing for microfluidics or the other way around?
    Zhang Y
    Int J Bioprint; 2019; 5(2):192. PubMed ID: 32596534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing-enabled uniform temperature distributions in microfluidic devices.
    Sanchez D; Hawkins G; Hinnen HS; Day A; Woolley AT; Nordin GP; Munro T
    Lab Chip; 2022 Nov; 22(22):4393-4408. PubMed ID: 36282069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems.
    Thaweskulchai T; Schulte A
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges faced with 3D-printed electrochemical sensors in analytical applications.
    Pradela-Filho LA; Araújo DAG; Ataide VN; Meloni GN; Paixão TRLC
    Anal Bioanal Chem; 2024 Apr; ():. PubMed ID: 38664267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centrifugation-Assisted Three-Dimensional Printing of Devices Embedded with Fully Enclosed Microchannels.
    Chu CH; Burentugs E; Lee D; Owens JM; Liu R; Frazier AB; Sarioglu AF
    3D Print Addit Manuf; 2023 Aug; 10(4):609-618. PubMed ID: 37609578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printed microfluidic devices: enablers and barriers.
    Waheed S; Cabot JM; Macdonald NP; Lewis T; Guijt RM; Paull B; Breadmore MC
    Lab Chip; 2016 May; 16(11):1993-2013. PubMed ID: 27146365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices.
    Beauchamp MJ; Nordin GP; Woolley AT
    Anal Bioanal Chem; 2017 Jul; 409(18):4311-4319. PubMed ID: 28612085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications.
    Duarte LC; Figueredo F; Chagas CLS; Cortón E; Coltro WKT
    Anal Chim Acta; 2024 Apr; 1299():342429. PubMed ID: 38499426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printed Microfluidic Features Using Dose Control in X, Y, and Z Dimensions.
    Beauchamp MJ; Gong H; Woolley AT; Nordin GP
    Micromachines (Basel); 2018 Jun; 9(7):. PubMed ID: 30424259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing.
    Ruiz C; Kadimisetty K; Yin K; Mauk MG; Zhao H; Liu C
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32492980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.
    Alapan Y; Hasan MN; Shen R; Gurkan UA
    J Nanotechnol Eng Med; 2015 May; 6(2):. PubMed ID: 27512530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing of Individualized Microfluidic Chips with DLP-Based Printer.
    Qiu J; Li J; Guo Z; Zhang Y; Nie B; Qi G; Zhang X; Zhang J; Wei R
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications.
    Milton LA; Viglione MS; Ong LJY; Nordin GP; Toh YC
    Lab Chip; 2023 Aug; 23(16):3537-3560. PubMed ID: 37476860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.