These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 37471030)

  • 1. A comprehensive survey of long-range tertiary interactions and motifs in non-coding RNA structures.
    Bohdan DR; Voronina VV; Bujnicki JM; Baulin EF
    Nucleic Acids Res; 2023 Sep; 51(16):8367-8382. PubMed ID: 37471030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards 3D structure prediction of large RNA molecules: an integer programming framework to insert local 3D motifs in RNA secondary structure.
    Reinharz V; Major F; Waldispühl J
    Bioinformatics; 2012 Jun; 28(12):i207-14. PubMed ID: 22689763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tertiary motifs revealed in analyses of higher-order RNA junctions.
    Laing C; Jung S; Iqbal A; Schlick T
    J Mol Biol; 2009 Oct; 393(1):67-82. PubMed ID: 19660472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas.
    Petrov AI; Zirbel CL; Leontis NB
    RNA; 2013 Oct; 19(10):1327-40. PubMed ID: 23970545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs.
    Parlea LG; Sweeney BA; Hosseini-Asanjan M; Zirbel CL; Leontis NB
    Methods; 2016 Jul; 103():99-119. PubMed ID: 27125735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of four-way junctions in RNA structures.
    Laing C; Schlick T
    J Mol Biol; 2009 Jul; 390(3):547-59. PubMed ID: 19445952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Features and Functions of the A-Minor Motif, the Most Common Motif in RNA Structure.
    Baulin EF
    Biochemistry (Mosc); 2021 Aug; 86(8):952-961. PubMed ID: 34488572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification and Identification of Non-canonical Base Pairs and Structural Motifs.
    Sarrazin-Gendron R; Waldispühl J; Reinharz V
    Methods Mol Biol; 2024; 2726():143-168. PubMed ID: 38780731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.
    Sarver M; Zirbel CL; Stombaugh J; Mokdad A; Leontis NB
    J Math Biol; 2008 Jan; 56(1-2):215-52. PubMed ID: 17694311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PERFUMES: pipeline to extract RNA functional motifs and exposed structures.
    Chol A; Sarrazin-Gendron R; Lécuyer É; Blanchette M; Waldispühl J
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38291894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DotAligner: identification and clustering of RNA structure motifs.
    Smith MA; Seemann SE; Quek XC; Mattick JS
    Genome Biol; 2017 Dec; 18(1):244. PubMed ID: 29284541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying RNA structures and interactions with a unified reduced chain representation model.
    Wang F; Xia R; Su Y; Cai P; Xu X
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127181. PubMed ID: 37793523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding recurrent RNA structural networks with fast maximal common subgraphs of edge-colored graphs.
    Soulé A; Reinharz V; Sarrazin-Gendron R; Denise A; Waldispühl J
    PLoS Comput Biol; 2021 May; 17(5):e1008990. PubMed ID: 34048427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sarcin/Ricin Domain RNA Retains Its Structure Better Than A-RNA in Adaptively Biased Molecular Dynamics Simulations.
    Imamoto JM; Zauhar RJ; Bruist MF
    J Phys Chem B; 2022 Dec; 126(48):10018-10033. PubMed ID: 36417896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo tertiary structure prediction using RNA123--benchmarking and application to Macugen.
    Eriksson ES; Joshi L; Billeter M; Eriksson LA
    J Mol Model; 2014 Aug; 20(8):2389. PubMed ID: 25107358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous prediction of RNA secondary structure and helix coaxial stacking.
    Shareghi P; Wang Y; Malmberg R; Cai L
    BMC Genomics; 2012 Jun; 13 Suppl 3(Suppl 3):S7. PubMed ID: 22759616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent prediction of RNA secondary structures with pseudoknots and local 3D motifs in an integer programming framework.
    Loyer G; Reinharz V
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38230755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. JAR3D Webserver: Scoring and aligning RNA loop sequences to known 3D motifs.
    Roll J; Zirbel CL; Sweeney B; Petrov AI; Leontis N
    Nucleic Acids Res; 2016 Jul; 44(W1):W320-7. PubMed ID: 27235417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNAJP: enhanced RNA 3D structure predictions with non-canonical interactions and global topology sampling.
    Li J; Chen SJ
    Nucleic Acids Res; 2023 Apr; 51(7):3341-3356. PubMed ID: 36864729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.