These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 37471030)

  • 21. Rfam 12.0: updates to the RNA families database.
    Nawrocki EP; Burge SW; Bateman A; Daub J; Eberhardt RY; Eddy SR; Floden EW; Gardner PP; Jones TA; Tate J; Finn RD
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D130-7. PubMed ID: 25392425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.
    Sloma MF; Mathews DH
    PLoS Comput Biol; 2017 Nov; 13(11):e1005827. PubMed ID: 29107980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The UA_handle: a versatile submotif in stable RNA architectures.
    Jaeger L; Verzemnieks EJ; Geary C
    Nucleic Acids Res; 2009 Jan; 37(1):215-30. PubMed ID: 19036788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative sequence and structure analysis reveals the conservation and diversity of nucleotide positions and their associated tertiary interactions in the riboswitches.
    Appasamy SD; Ramlan EI; Firdaus-Raih M
    PLoS One; 2013; 8(9):e73984. PubMed ID: 24040136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CompAnnotate: a comparative approach to annotate base-pairing interactions in RNA 3D structures.
    Islam S; Ge P; Zhang S
    Nucleic Acids Res; 2017 Aug; 45(14):e136. PubMed ID: 28641399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNAMotifScanX: a graph alignment approach for RNA structural motif identification.
    Zhong C; Zhang S
    RNA; 2015 Mar; 21(3):333-46. PubMed ID: 25595715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Base-intercalated and base-wedged stacking elements in 3D-structure of RNA and RNA-protein complexes.
    Baulin E; Metelev V; Bogdanov A
    Nucleic Acids Res; 2020 Sep; 48(15):8675-8685. PubMed ID: 32687167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Context-sensitivity of isosteric substitutions of non-Watson-Crick basepairs in recurrent RNA 3D motifs.
    Khisamutdinov EF; Sweeney BA; Leontis NB
    Nucleic Acids Res; 2021 Sep; 49(16):9574-9593. PubMed ID: 34403481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BiORSEO: a bi-objective method to predict RNA secondary structures with pseudoknots using RNA 3D modules.
    Becquey L; Angel E; Tahi F
    Bioinformatics; 2020 Apr; 36(8):2451-2457. PubMed ID: 31913439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Annotation of the local context of the RNA secondary structure improves the classification and prediction of A-minors.
    Shalybkova AA; Mikhailova DS; Kulakovskiy IV; Fakhranurova LI; Baulin EF
    RNA; 2021 May; 27(8):907-19. PubMed ID: 34016706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA structure and dynamics: a base pairing perspective.
    Halder S; Bhattacharyya D
    Prog Biophys Mol Biol; 2013 Nov; 113(2):264-83. PubMed ID: 23891726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA structural motifs: building blocks of a modular biomolecule.
    Hendrix DK; Brenner SE; Holbrook SR
    Q Rev Biophys; 2005 Aug; 38(3):221-43. PubMed ID: 16817983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNAMotifScan: automatic identification of RNA structural motifs using secondary structural alignment.
    Zhong C; Tang H; Zhang S
    Nucleic Acids Res; 2010 Oct; 38(18):e176. PubMed ID: 20696653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A folding algorithm for extended RNA secondary structures.
    Höner zu Siederdissen C; Bernhart SH; Stadler PF; Hofacker IL
    Bioinformatics; 2011 Jul; 27(13):i129-36. PubMed ID: 21685061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate prediction of RNA nucleotide interactions with backbone k-tree model.
    Ding L; Xue X; LaMarca S; Mohebbi M; Samad A; Malmberg RL; Cai L
    Bioinformatics; 2015 Aug; 31(16):2660-7. PubMed ID: 25886978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recognizing RNA structural motifs in HT-SELEX data for ribosomal protein S15.
    Pei S; Slinger BL; Meyer MM
    BMC Bioinformatics; 2017 Jun; 18(1):298. PubMed ID: 28587636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Method to Predict the Structure and Stability of RNA/RNA Complexes.
    Xu X; Chen SJ
    Methods Mol Biol; 2016; 1490():63-72. PubMed ID: 27665593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionarily divergent spliceosomal snRNAs and a conserved non-coding RNA processing motif in Giardia lamblia.
    Hudson AJ; Moore AN; Elniski D; Joseph J; Yee J; Russell AG
    Nucleic Acids Res; 2012 Nov; 40(21):10995-1008. PubMed ID: 23019220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graph Theoretical Methods and Workflows for Searching and Annotation of RNA Tertiary Base Motifs and Substructures.
    Emrizal R; Hamdani HY; Firdaus-Raih M
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel features for identifying A-minors in three-dimensional RNA molecules.
    Sheth P; Cervantes-Cervantes M; Nagula A; Laing C; Wang JT
    Comput Biol Chem; 2013 Dec; 47():240-5. PubMed ID: 24211672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.