BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37471698)

  • 1. Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C(
    Yu K; Zou Z; Igareta NV; Tachibana R; Bechter J; Köhler V; Chen D; Ward TR
    J Am Chem Soc; 2023 Aug; 145(30):16621-16629. PubMed ID: 37471698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition Metal-Catalyzed Regioselective Direct C-H Amidation: Interplay between Inner- and Outer-Sphere Pathways for Nitrene Cross-Coupling Reactions.
    Du B; Chan CM; Au CM; Yu WY
    Acc Chem Res; 2022 Aug; 55(15):2123-2137. PubMed ID: 35853135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular amidation of unactivated sp2 and sp2 C-H bonds via palladium-catalyzed cascade C-H activation/nitrene insertion.
    Thu HY; Yu WY; Che CM
    J Am Chem Soc; 2006 Jul; 128(28):9048-9. PubMed ID: 16834374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective Hydroxylation of Benzylic C(sp
    Serrano-Plana J; Rumo C; Rebelein JG; Peterson RL; Barnet M; Ward TR
    J Am Chem Soc; 2020 Jun; 142(24):10617-10623. PubMed ID: 32450689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iridium-Catalyzed Enantioselective C(sp
    Wang H; Park Y; Bai Z; Chang S; He G; Chen G
    J Am Chem Soc; 2019 May; 141(17):7194-7201. PubMed ID: 30978019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp
    Rumo C; Stein A; Klehr J; Tachibana R; Prescimone A; Häussinger D; Ward TR
    J Am Chem Soc; 2022 Jul; 144(26):11676-11684. PubMed ID: 35749305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective functionalization of unactivated C(sp
    Chen YB; Liu LG; Wang ZQ; Chang R; Lu X; Zhou B; Ye LW
    Nat Commun; 2024 Mar; 15(1):2232. PubMed ID: 38472194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iridium(III)-Catalyzed Regioselective Intermolecular Unactivated Secondary Csp(3) -H Bond Amidation.
    Xiao X; Hou C; Zhang Z; Ke Z; Lan J; Jiang H; Zeng W
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11897-901. PubMed ID: 27561950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-catalyzed site-selective intramolecular amidation of unactivated C(sp³)-H bonds.
    Wu X; Zhao Y; Zhang G; Ge H
    Angew Chem Int Ed Engl; 2014 Apr; 53(14):3706-10. PubMed ID: 24590659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Modeling for Artificial Metalloenzyme Design and Optimization.
    Alonso-Cotchico L; Rodrı Guez-Guerra J; Lledós A; Maréchal JD
    Acc Chem Res; 2020 Apr; 53(4):896-905. PubMed ID: 32233391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruthenium(II)-Catalyzed Enantioselective γ-Lactams Formation by Intramolecular C-H Amidation of 1,4,2-Dioxazol-5-ones.
    Xing Q; Chan CM; Yeung YW; Yu WY
    J Am Chem Soc; 2019 Mar; 141(9):3849-3853. PubMed ID: 30785737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nickel-Catalyzed Site-Selective Intermolecular C(sp
    Chen J; Wang H; Day CS; Martin R
    Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202212983. PubMed ID: 36254803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu-Catalyzed Intramolecular Amidation of Unactivated C(sp(3) )-H Bonds To Synthesize N-Substituted Indolines.
    Pan F; Wu B; Shi ZJ
    Chemistry; 2016 May; 22(19):6487-90. PubMed ID: 26945702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral-at-Ruthenium Catalysts for Nitrene-Mediated Asymmetric C-H Functionalizations.
    Ye CX; Meggers E
    Acc Chem Res; 2023 May; 56(9):1128-1141. PubMed ID: 37071874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodium(III)-Catalyzed Amidation of Unactivated C(sp(3) )-H Bonds.
    Wang H; Tang G; Li X
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):13049-52. PubMed ID: 26480337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iridium-catalyzed intermolecular amidation of sp³ C-H bonds: late-stage functionalization of an unactivated methyl group.
    Kang T; Kim Y; Lee D; Wang Z; Chang S
    J Am Chem Soc; 2014 Mar; 136(11):4141-4. PubMed ID: 24580093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iridium-Catalyzed Asymmetric Borylation of Unactivated Methylene C(sp
    Reyes RL; Iwai T; Maeda S; Sawamura M
    J Am Chem Soc; 2019 May; 141(17):6817-6821. PubMed ID: 30983334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Lactams via Ir-Catalyzed C-H Amidation Involving Ir-Nitrene Intermediates.
    Liu J; Ye W; Wang S; Zheng J; Tang W; Li X
    J Org Chem; 2020 Mar; 85(6):4430-4440. PubMed ID: 32103669
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.