These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37473509)

  • 1. Optimization of water quality index models using machine learning approaches.
    Ding F; Zhang W; Cao S; Hao S; Chen L; Xie X; Li W; Jiang M
    Water Res; 2023 Sep; 243():120337. PubMed ID: 37473509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of river water quality indices-a review.
    Sutadian AD; Muttil N; Yilmaz AG; Perera BJ
    Environ Monit Assess; 2016 Jan; 188(1):58. PubMed ID: 26707404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal and spatial characteristics of the water pollutant concentration in Huaihe River Basin from 2003 to 2012, China.
    Dou M; Zhang Y; Li G
    Environ Monit Assess; 2016 Sep; 188(9):522. PubMed ID: 27531013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of Seven Water Quality Indices (WQIs) in a Mediterranean River.
    Zotou I; Tsihrintzis VA; Gikas GD
    Environ Monit Assess; 2019 Jul; 191(8):505. PubMed ID: 31342174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding river pollution trends and their landscape determinants in an ecologically fragile karst basin using a machine learning model.
    Xu G; Fan H; Oliver DM; Dai Y; Li H; Shi Y; Long H; Xiong K; Zhao Z
    Environ Res; 2022 Nov; 214(Pt 4):113843. PubMed ID: 35931190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods.
    Najafzadeh M; Ghaemi A
    Environ Monit Assess; 2019 May; 191(6):380. PubMed ID: 31104155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coupling methodology of the analytic hierarchy process and entropy weight theory for assessing coastal water quality.
    Xiao K; Tamborski J; Wang X; Feng X; Wang S; Wang Q; Lin D; Li H
    Environ Sci Pollut Res Int; 2022 May; 29(21):31217-31234. PubMed ID: 35001278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water quality characteristics and assessment of Yongding New River by improved comprehensive water quality identification index based on game theory.
    Liu Y; Hu Y; Hu Y; Gao Y; Liu Z
    J Environ Sci (China); 2021 Jun; 104():40-52. PubMed ID: 33985743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of water quality and its driving forces in the Shaying River Basin with the grey relational analysis based on combination weighting.
    Tao J; Sun XH; Cao Y; Ling MH
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):18103-18115. PubMed ID: 34677767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust machine learning algorithms for predicting coastal water quality index.
    Uddin MG; Nash S; Mahammad Diganta MT; Rahman A; Olbert AI
    J Environ Manage; 2022 Nov; 321():115923. PubMed ID: 35988401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Water Quality Assessment and Spatial-temporal Variation Analysis in Yellow River Basin].
    Liu YL; Zheng YA
    Huan Jing Ke Xue; 2022 Mar; 43(3):1332-1345. PubMed ID: 35258197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water pollution characteristics and analysis of Chaohu Lake basin by using different assessment methods.
    Yang X; Cui H; Liu X; Wu Q; Zhang H
    Environ Sci Pollut Res Int; 2020 May; 27(15):18168-18181. PubMed ID: 32172415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment.
    Uddin MG; Nash S; Rahman A; Olbert AI
    Water Res; 2022 Jul; 219():118532. PubMed ID: 35533623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China.
    Di H; Liu X; Zhang J; Tong Z; Ji M
    Int J Environ Res Public Health; 2018 Mar; 15(3):. PubMed ID: 29543706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the water quality characteristics and tracing the pollutant sources in the Yellow River Basin, China.
    Tian Y; Wen Z; Cheng M; Xu M
    Sci Total Environ; 2022 Nov; 846():157389. PubMed ID: 35843333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coastal groundwater quality prediction using objective-weighted WQI and machine learning approach.
    Das CR; Das S
    Environ Sci Pollut Res Int; 2024 Mar; 31(13):19439-19457. PubMed ID: 38355860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marine waters assessment using improved water quality model incorporating machine learning approaches.
    Uddin MG; Rahman A; Nash S; Diganta MTM; Sajib AM; Moniruzzaman M; Olbert AI
    J Environ Manage; 2023 Oct; 344():118368. PubMed ID: 37364491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated risk assessment framework using information theory-based coupling methods for basin-scale water quality management: A case study in the Danjiangkou Reservoir Basin, China.
    Zhang C; Nong X; Shao D; Chen L
    Sci Total Environ; 2023 Aug; 884():163731. PubMed ID: 37142036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying the water quality variation characteristics and their main driving factors from 2008 to 2020 in the Yellow River Basin, China.
    Liu S; Qiu Y; Fu R; Liu Y; Suo C
    Environ Sci Pollut Res Int; 2023 May; 30(25):66753-66766. PubMed ID: 37099101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?
    Liu M; Lu J
    Environ Sci Pollut Res Int; 2014 Sep; 21(18):11036-53. PubMed ID: 24894753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.