These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 37473576)
1. Automated model discovery for muscle using constitutive recurrent neural networks. Wang LM; Linka K; Kuhl E J Mech Behav Biomed Mater; 2023 Sep; 145():106021. PubMed ID: 37473576 [TBL] [Abstract][Full Text] [Related]
2. Automated model discovery for human brain using Constitutive Artificial Neural Networks. Linka K; St Pierre SR; Kuhl E Acta Biomater; 2023 Apr; 160():134-151. PubMed ID: 36736643 [TBL] [Abstract][Full Text] [Related]
3. Recurrent neural network to predict hyperelastic constitutive behaviors of the skeletal muscle. Ballit A; Dao TT Med Biol Eng Comput; 2022 Apr; 60(4):1177-1185. PubMed ID: 35244859 [TBL] [Abstract][Full Text] [Related]
4. Strain-dependent stress relaxation behavior of healthy right ventricular free wall. Liu W; Labus KM; Ahern M; LeBar K; Avazmohammadi R; Puttlitz CM; Wang Z Acta Biomater; 2022 Oct; 152():290-299. PubMed ID: 36030049 [TBL] [Abstract][Full Text] [Related]
5. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling. Van Loocke M; Lyons CG; Simms CK J Biomech; 2008; 41(7):1555-66. PubMed ID: 18396290 [TBL] [Abstract][Full Text] [Related]
6. Method for characterizing viscoelasticity of human gluteal tissue. Then C; Vogl TJ; Silber G J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834 [TBL] [Abstract][Full Text] [Related]
8. Identifying Heterogeneous Micromechanical Properties of Biological Tissues via Physics-Informed Neural Networks. Wu W; Daneker M; Turner KT; Jolley MA; Lu L Small Methods; 2024 Aug; ():e2400620. PubMed ID: 39091065 [TBL] [Abstract][Full Text] [Related]
9. Computational modelling of the mechanical behaviour of protein-based hydrogels. Pérez-Benito Á; Huerta-López C; Alegre-Cebollada J; García-Aznar JM; Hervas-Raluy S J Mech Behav Biomed Mater; 2023 Feb; 138():105661. PubMed ID: 36630754 [TBL] [Abstract][Full Text] [Related]
10. Fully non-linear hyper-viscoelastic modeling of skeletal muscle in compression. Wheatley BB; Pietsch RB; Haut Donahue TL; Williams LN Comput Methods Biomech Biomed Engin; 2016; 19(11):1181-9. PubMed ID: 26652761 [TBL] [Abstract][Full Text] [Related]
11. Automated model discovery for textile structures: The unique mechanical signature of warp knitted fabrics. McCulloch JA; Kuhl E Acta Biomater; 2024 Nov; 189():461-477. PubMed ID: 39368719 [TBL] [Abstract][Full Text] [Related]
12. Mechanical characterization of human brain tissue. Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920 [TBL] [Abstract][Full Text] [Related]
13. A viscoelastic model for human myocardium. Nordsletten D; Capilnasiu A; Zhang W; Wittgenstein A; Hadjicharalambous M; Sommer G; Sinkus R; Holzapfel GA Acta Biomater; 2021 Nov; 135():441-457. PubMed ID: 34487858 [TBL] [Abstract][Full Text] [Related]
14. Identifying heterogeneous micromechanical properties of biological tissues via physics-informed neural networks. Wu W; Daneker M; Turner KT; Jolley MA; Lu L ArXiv; 2024 Jul; ():. PubMed ID: 38745694 [TBL] [Abstract][Full Text] [Related]
15. The nonlinear elastic and viscoelastic passive properties of left ventricular papillary muscle of a guinea pig heart. Hassan MA; Hamdi M; Noma A J Mech Behav Biomed Mater; 2012 Jan; 5(1):99-109. PubMed ID: 22100084 [TBL] [Abstract][Full Text] [Related]
16. Strain-Level Dependent Nonequilibrium Anisotropic Viscoelasticity: Application to the Abdominal Muscle. Latorre M; Montáns FJ J Biomech Eng; 2017 Oct; 139(10):. PubMed ID: 28753687 [TBL] [Abstract][Full Text] [Related]
17. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation. Oddes Z; Solav D J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779 [TBL] [Abstract][Full Text] [Related]
18. A chemo-mechanical constitutive model for transiently cross-linked actin networks and a theoretical assessment of their viscoelastic behaviour. Fallqvist B; Kroon M Biomech Model Mechanobiol; 2013 Apr; 12(2):373-82. PubMed ID: 22623110 [TBL] [Abstract][Full Text] [Related]
19. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue. Hatami-Marbini H; Maulik R J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630 [TBL] [Abstract][Full Text] [Related]
20. Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials. Narooei K; Arman M J Mech Behav Biomed Mater; 2018 Mar; 79():104-113. PubMed ID: 29289929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]