These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37473616)

  • 1. Effects of gas saturation and sparging on sonochemical oxidation activity under different liquid level and volume conditions in 300-kHz sonoreactors: Zeroth- and first-order reaction comparison using KI dosimetry and BPA degradation.
    Lee S; Son Y
    Ultrason Sonochem; 2023 Aug; 98():106521. PubMed ID: 37473616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of dissolved gases on sonochemical oxidation in a 20 kHz probe system: Continuous monitoring of dissolved oxygen concentration and sonochemical oxidation activity.
    Choi J; Son Y
    Ultrason Sonochem; 2023 Jul; 97():106452. PubMed ID: 37245263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of gas saturation and sparging on sonochemical oxidation activity in open and closed systems, Part I: H
    Son Y; Seo J
    Ultrason Sonochem; 2022 Nov; 90():106214. PubMed ID: 36327919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of gas sparging and mechanical mixing on sonochemical oxidation activity.
    Choi J; Lee H; Son Y
    Ultrason Sonochem; 2021 Jan; 70():105334. PubMed ID: 32932226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of liquid recirculation flow on sonochemical oxidation activity in a 28 kHz sonoreactor.
    Lee D; Na I; Son Y
    Chemosphere; 2022 Jan; 286(Pt 2):131780. PubMed ID: 34358887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of gas saturation and sparging on sonochemical oxidation activity in open and closed systems, part II: NO
    Son Y; Choi J
    Ultrason Sonochem; 2023 Jan; 92():106250. PubMed ID: 36459904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of sonochemical oxidation reactions using air sparging in a 36 kHz sonoreactor.
    Choi J; Khim J; Neppolian B; Son Y
    Ultrason Sonochem; 2019 Mar; 51():412-418. PubMed ID: 30060989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of different gases on the sonochemical Cr(VI) reduction in the presence of citric acid.
    Meichtry JM; Cancelada L; Destaillats H; Litter MI
    Chemosphere; 2020 Dec; 260():127211. PubMed ID: 32682127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of liquid height/volume, initial concentration of reactant and acoustic power on sonochemical oxidation.
    Lim M; Ashokkumar M; Son Y
    Ultrason Sonochem; 2014 Nov; 21(6):1988-93. PubMed ID: 24690295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sonochemical oxidation activity in 20-kHz probe-type sonicator systems: The effects of probe positions and vessel sizes.
    Na I; Son Y
    Ultrason Sonochem; 2024 Jun; 108():106959. PubMed ID: 38896894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue.
    Kobayashi D; Honma C; Matsumoto H; Takahashi T; Kuroda C; Otake K; Shono A
    Ultrason Sonochem; 2014 Jul; 21(4):1489-95. PubMed ID: 24439912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric and operational optimization of 20-kHz probe-type sonoreactor for enhancing sonochemical activity.
    Son Y; No Y; Kim J
    Ultrason Sonochem; 2020 Jul; 65():105065. PubMed ID: 32199254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products.
    Torres RA; Pétrier C; Combet E; Carrier M; Pulgarin C
    Ultrason Sonochem; 2008 Apr; 15(4):605-611. PubMed ID: 17822937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of alcohols and dissolved gases on sonochemical generation of hydrogen in a 300 kHz sonoreactor.
    Choi J; Yoon S; Son Y
    Ultrason Sonochem; 2023 Dec; 101():106660. PubMed ID: 37924613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of sonochemical activities at a frequency of 334 kHz: the effect of geometric parameters of sonoreactor.
    Kim E; Cui M; Jang M; Park B; Son Y; Khim J
    Ultrason Sonochem; 2014 Jul; 21(4):1504-11. PubMed ID: 24508490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms for removal of gaseous toluene in headspace using sonophysical and sonochemical effects at the gas-liquid interface.
    Okada A; Sekiguchi K; Sankoda K
    J Hazard Mater; 2022 Feb; 423(Pt B):127221. PubMed ID: 34844351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of hydrogen peroxide on the sonochemical degradation of phenol and bisphenol A.
    Lim M; Son Y; Khim J
    Ultrason Sonochem; 2014 Nov; 21(6):1976-81. PubMed ID: 24746037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A standard method to calibrate sonochemical efficiency of an individual reaction system.
    Koda S; Kimura T; Kondo T; Mitome H
    Ultrason Sonochem; 2003 May; 10(3):149-56. PubMed ID: 12726951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production.
    Merouani S; Hamdaoui O; Saoudi F; Chiha M
    J Hazard Mater; 2010 Jun; 178(1-3):1007-14. PubMed ID: 20211524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Na2SO4 or NaCl on sonochemical degradation of phenolic compounds in an aqueous solution under Ar: Positive and negative effects induced by the presence of salts.
    Uddin MH; Nanzai B; Okitsu K
    Ultrason Sonochem; 2016 Jan; 28():144-149. PubMed ID: 26384893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.