These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37473694)

  • 1. Upper limit efficiency estimates for electromicrobial production of drop-in jet fuels.
    Sheppard TJ; Specht DA; Barstow B
    Bioelectrochemistry; 2023 Dec; 154():108506. PubMed ID: 37473694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency estimates for electromicrobial production of branched-chain hydrocarbons.
    Sheppard TJ; Specht DA; Barstow B
    iScience; 2024 Jan; 27(1):108773. PubMed ID: 38283329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic metabolic pathways for photobiological conversion of CO
    Yunus IS; Wichmann J; Wördenweber R; Lauersen KJ; Kruse O; Jones PR
    Metab Eng; 2018 Sep; 49():201-211. PubMed ID: 30144559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic Constraints on Electromicrobial Protein Production.
    Wise L; Marecos S; Randolph K; Hassan M; Nshimyumukiza E; Strouse J; Salimijazi F; Barstow B
    Front Bioeng Biotechnol; 2022; 10():820384. PubMed ID: 35265598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of poplar biomass into high-energy density tricyclic sesquiterpene jet fuel blendstocks.
    Geiselman GM; Kirby J; Landera A; Otoupal P; Papa G; Barcelos C; Sundstrom ER; Das L; Magurudeniya HD; Wehrs M; Rodriguez A; Simmons BA; Magnuson JK; Mukhopadhyay A; Lee TS; George A; Gladden JM
    Microb Cell Fact; 2020 Nov; 19(1):208. PubMed ID: 33183275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.
    Falter C; Batteiger V; Sizmann A
    Environ Sci Technol; 2016 Jan; 50(1):470-7. PubMed ID: 26641878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous photoproduction of hydrocarbon drop-in fuel by microbial cell factories.
    Moulin S; Légeret B; Blangy S; Sorigué D; Burlacot A; Auroy P; Li-Beisson Y; Peltier G; Beisson F
    Sci Rep; 2019 Sep; 9(1):13713. PubMed ID: 31548626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life-cycle analysis of bio-based aviation fuels.
    Han J; Elgowainy A; Cai H; Wang MQ
    Bioresour Technol; 2013 Dec; 150():447-56. PubMed ID: 23978607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic Production of Jet Fuels from Biomass.
    Díaz-Pérez MA; Serrano-Ruiz JC
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32059552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addition of formate dehydrogenase increases the production of renewable alkane from an engineered metabolic pathway.
    Jaroensuk J; Intasian P; Kiattisewee C; Munkajohnpon P; Chunthaboon P; Buttranon S; Trisrivirat D; Wongnate T; Maenpuen S; Tinikul R; Chaiyen P
    J Biol Chem; 2019 Jul; 294(30):11536-11548. PubMed ID: 31182484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Strategies for the Production of Fuels, Lubricants, and Chemicals from Biomass.
    Shylesh S; Gokhale AA; Ho CR; Bell AT
    Acc Chem Res; 2017 Oct; 50(10):2589-2597. PubMed ID: 28930430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renewable jet fuel.
    Kallio P; Pásztor A; Akhtar MK; Jones PR
    Curr Opin Biotechnol; 2014 Apr; 26():50-5. PubMed ID: 24679258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass.
    Bi P; Wang J; Zhang Y; Jiang P; Wu X; Liu J; Xue H; Wang T; Li Q
    Bioresour Technol; 2015 May; 183():10-7. PubMed ID: 25710678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives.
    Jiménez-Díaz L; Caballero A; Pérez-Hernández N; Segura A
    Microb Biotechnol; 2017 Jan; 10(1):103-124. PubMed ID: 27723249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of deteriogenic fungi in aviation fuels (fossil and biofuel) during simulated storage.
    Lobato MR; Cazarolli JC; Rios RDF; D' Alessandro EB; Lutterbach MTS; Filho NRA; Pasa VMD; Aranda D; Scorza PR; Bento FM
    Braz J Microbiol; 2023 Sep; 54(3):1603-1621. PubMed ID: 37584891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality.
    Cheng J; Li T; Huang R; Zhou J; Cen K
    Bioresour Technol; 2014 Apr; 158():378-82. PubMed ID: 24656484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Deoxygenation of the Oil and Biodiesel of Licuri (
    Araújo PHM; Maia AS; Cordeiro AMTM; Gondim AD; Santos NA
    ACS Omega; 2019 Oct; 4(14):15849-15855. PubMed ID: 31592170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward net-zero sustainable aviation fuel with wet waste-derived volatile fatty acids.
    Huq NA; Hafenstine GR; Huo X; Nguyen H; Tifft SM; Conklin DR; Stück D; Stunkel J; Yang Z; Heyne JS; Wiatrowski MR; Zhang Y; Tao L; Zhu J; McEnally CS; Christensen ED; Hays C; Van Allsburg KM; Unocic KA; Meyer HM; Abdullah Z; Vardon DR
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33723013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.
    Falter C; Pitz-Paal R
    Environ Sci Technol; 2017 Nov; 51(21):12938-12947. PubMed ID: 28946739
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.