These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 37473731)
1. BayesTME: An end-to-end method for multiscale spatial transcriptional profiling of the tissue microenvironment. Zhang H; Hunter MV; Chou J; Quinn JF; Zhou M; White RM; Tansey W Cell Syst; 2023 Jul; 14(7):605-619.e7. PubMed ID: 37473731 [TBL] [Abstract][Full Text] [Related]
2. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Li H; Zhou J; Li Z; Chen S; Liao X; Zhang B; Zhang R; Wang Y; Sun S; Gao X Nat Commun; 2023 Mar; 14(1):1548. PubMed ID: 36941264 [TBL] [Abstract][Full Text] [Related]
3. SpatialPrompt: spatially aware scalable and accurate tool for spot deconvolution and domain identification in spatial transcriptomics. Swain AK; Pandit V; Sharma J; Yadav P Commun Biol; 2024 May; 7(1):639. PubMed ID: 38796505 [TBL] [Abstract][Full Text] [Related]
4. Next-generation deconvolution of transcriptomic data to investigate the tumor microenvironment. Merotto L; Zopoglou M; Zackl C; Finotello F Int Rev Cell Mol Biol; 2024; 382():103-143. PubMed ID: 38225101 [TBL] [Abstract][Full Text] [Related]
5. Spatial transcriptomics deconvolution at single-cell resolution using Redeconve. Zhou Z; Zhong Y; Zhang Z; Ren X Nat Commun; 2023 Dec; 14(1):7930. PubMed ID: 38040768 [TBL] [Abstract][Full Text] [Related]
6. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics. Sang-Aram C; Browaeys R; Seurinck R; Saeys Y Elife; 2024 May; 12():. PubMed ID: 38787371 [TBL] [Abstract][Full Text] [Related]
7. Computational solutions for spatial transcriptomics. Kleino I; Frolovaitė P; Suomi T; Elo LL Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664 [TBL] [Abstract][Full Text] [Related]
8. Spatial transcriptomics at subspot resolution with BayesSpace. Zhao E; Stone MR; Ren X; Guenthoer J; Smythe KS; Pulliam T; Williams SR; Uytingco CR; Taylor SEB; Nghiem P; Bielas JH; Gottardo R Nat Biotechnol; 2021 Nov; 39(11):1375-1384. PubMed ID: 34083791 [TBL] [Abstract][Full Text] [Related]
9. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Li B; Zhang W; Guo C; Xu H; Li L; Fang M; Hu Y; Zhang X; Yao X; Tang M; Liu K; Zhao X; Lin J; Cheng L; Chen F; Xue T; Qu K Nat Methods; 2022 Jun; 19(6):662-670. PubMed ID: 35577954 [TBL] [Abstract][Full Text] [Related]
10. Integrating spatial transcriptomics and bulk RNA-seq: predicting gene expression with enhanced resolution through graph attention networks. Baul S; Tanvir Ahmed K; Jiang Q; Wang G; Li Q; Yong J; Zhang W Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38960406 [TBL] [Abstract][Full Text] [Related]
11. BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis. Singhal V; Chou N; Lee J; Yue Y; Liu J; Chock WK; Lin L; Chang YC; Teo EML; Aow J; Lee HK; Chen KH; Prabhakar S Nat Genet; 2024 Mar; 56(3):431-441. PubMed ID: 38413725 [TBL] [Abstract][Full Text] [Related]
12. A Bayesian multivariate mixture model for high throughput spatial transcriptomics. Allen C; Chang Y; Neelon B; Chang W; Kim HJ; Li Z; Ma Q; Chung D Biometrics; 2023 Sep; 79(3):1775-1787. PubMed ID: 35895854 [TBL] [Abstract][Full Text] [Related]
13. Dual decoding of cell types and gene expression in spatial transcriptomics with PANDA. Wang MG; Chen L; Zhang XF Nucleic Acids Res; 2024 Nov; 52(20):12173-12190. PubMed ID: 39404057 [TBL] [Abstract][Full Text] [Related]
14. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. Miller BF; Huang F; Atta L; Sahoo A; Fan J Nat Commun; 2022 Apr; 13(1):2339. PubMed ID: 35487922 [TBL] [Abstract][Full Text] [Related]
15. Benchmarking and integration of methods for deconvoluting spatial transcriptomic data. Yan L; Sun X Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36515467 [TBL] [Abstract][Full Text] [Related]
16. MUSTANG: Multi-sample spatial transcriptomics data analysis with cross-sample transcriptional similarity guidance. Niyakan S; Sheng J; Cao Y; Zhang X; Xu Z; Wu L; Wong STC; Qian X Patterns (N Y); 2024 May; 5(5):100986. PubMed ID: 38800365 [TBL] [Abstract][Full Text] [Related]
17. Metabolic heterogeneity in clear cell renal cell carcinoma revealed by single-cell RNA sequencing and spatial transcriptomics. Yang G; Cheng J; Xu J; Shen C; Lu X; He C; Huang J; He M; Cheng J; Wang H J Transl Med; 2024 Feb; 22(1):210. PubMed ID: 38414015 [TBL] [Abstract][Full Text] [Related]
18. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information. Li H; Li H; Zhou J; Gao X Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455 [TBL] [Abstract][Full Text] [Related]
19. stDiff: a diffusion model for imputing spatial transcriptomics through single-cell transcriptomics. Li K; Li J; Tao Y; Wang F Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38628114 [TBL] [Abstract][Full Text] [Related]
20. A comprehensive comparison on cell-type composition inference for spatial transcriptomics data. Chen J; Liu W; Luo T; Yu Z; Jiang M; Wen J; Gupta GP; Giusti P; Zhu H; Yang Y; Li Y Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35753702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]