These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37473749)
1. Combining rotary wet-spinning biofabrication and electro-mechanical stimulation for the Celikkin N; Presutti D; Maiullari F; Volpi M; Promovych Y; Gizynski K; Dolinska J; Wiśniewska A; Opałło M; Paradiso A; Rinoldi C; Fuoco C; Swieszkowski W; Bearzi C; Rizzi R; Gargioli C; Costantini M Biofabrication; 2023 Aug; 15(4):. PubMed ID: 37473749 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499 [TBL] [Abstract][Full Text] [Related]
3. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
4. Engineered Microfibers for Tissue Engineering. Su R; Ai Y; Wang J; Wu L; Sun H; Ding M; Xie R; Liang Q ACS Appl Bio Mater; 2024 Sep; 7(9):5823-5840. PubMed ID: 39145987 [TBL] [Abstract][Full Text] [Related]
5. Millimeter-thick 3D tissues constructed by densely cellularized core-shell microfluidic bioprinting. Nie M; Nagata S; Oda H; Takeuchi S Biofabrication; 2023 Apr; 15(3):. PubMed ID: 37059089 [TBL] [Abstract][Full Text] [Related]
6. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
7. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Maiullari F; Costantini M; Milan M; Pace V; Chirivì M; Maiullari S; Rainer A; Baci D; Marei HE; Seliktar D; Gargioli C; Bearzi C; Rizzi R Sci Rep; 2018 Sep; 8(1):13532. PubMed ID: 30201959 [TBL] [Abstract][Full Text] [Related]
8. Co-axial wet-spinning in 3D bioprinting: state of the art and future perspective of microfluidic integration. Costantini M; Colosi C; Święszkowski W; Barbetta A Biofabrication; 2018 Nov; 11(1):012001. PubMed ID: 30284540 [TBL] [Abstract][Full Text] [Related]
9. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
10. Hydrogel-Based Fiber Biofabrication Techniques for Skeletal Muscle Tissue Engineering. Volpi M; Paradiso A; Costantini M; Świȩszkowski W ACS Biomater Sci Eng; 2022 Feb; 8(2):379-405. PubMed ID: 35084836 [TBL] [Abstract][Full Text] [Related]
11. Tendon Tissue Engineering: Effects of Mechanical and Biochemical Stimulation on Stem Cell Alignment on Cell-Laden Hydrogel Yarns. Rinoldi C; Costantini M; Kijeńska-Gawrońska E; Testa S; Fornetti E; Heljak M; Ćwiklińska M; Buda R; Baldi J; Cannata S; Guzowski J; Gargioli C; Khademhosseini A; Swieszkowski W Adv Healthc Mater; 2019 Apr; 8(7):e1801218. PubMed ID: 30725521 [TBL] [Abstract][Full Text] [Related]
12. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting. Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010 [TBL] [Abstract][Full Text] [Related]
13. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
14. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
15. Automated Microfluidics-Assisted Hydrogel-Based Wet-Spinning for the Biofabrication of Biomimetic Engineered Myotendinous Junction. Volpi M; Paradiso A; Walejewska E; Gargioli C; Costantini M; Swieszkowski W Adv Healthc Mater; 2024 Sep; ():e2402075. PubMed ID: 39313990 [TBL] [Abstract][Full Text] [Related]
16. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
17. 3D Bioprinting of Complex, Cell-laden Alginate Constructs. Tabriz AG; Cornelissen DJ; Shu W Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817 [TBL] [Abstract][Full Text] [Related]
18. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528 [TBL] [Abstract][Full Text] [Related]
19. Functional Skeletal Muscle Regeneration Using Muscle Mimetic Tissue Fabricated by Microvalve-Assisted Coaxial 3D Bioprinting. Lee H; Kim SH; Lee JS; Lee YJ; Lee OJ; Ajiteru O; Sultan MT; Lee SW; Park CH Adv Healthc Mater; 2023 Mar; 12(7):e2202664. PubMed ID: 36469728 [TBL] [Abstract][Full Text] [Related]
20. Engineered Myoblast-Laden Collagen Filaments Fabricated Using a Submerged Bioprinting Process to Obtain Efficient Myogenic Activities. Kim D; Hwangbo H; Kim G Biomacromolecules; 2021 Dec; 22(12):5042-5051. PubMed ID: 34783537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]