BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37473762)

  • 1. Archaeal type IV pili stabilize Haloferax volcanii biofilms in flow.
    Odermatt PD; Nussbaum P; Monnappa S; Talà L; Li Z; Sivabalasarma S; Albers SV; Persat A
    Curr Biol; 2023 Aug; 33(15):3265-3271.e4. PubMed ID: 37473762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haloferax volcanii Immersed Liquid Biofilms Develop Independently of Known Biofilm Machineries and Exhibit Rapid Honeycomb Pattern Formation.
    Schiller H; Schulze S; Mutan Z; de Vaulx C; Runcie C; Schwartz J; Rados T; Bisson Filho AW; Pohlschroder M
    mSphere; 2020 Dec; 5(6):. PubMed ID: 33328348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Haloferax volcanii Pilin N-Glycans with Diverse Roles in Pilus Biosynthesis, Adhesion, and Microcolony Formation.
    Esquivel RN; Schulze S; Xu R; Hippler M; Pohlschroder M
    J Biol Chem; 2016 May; 291(20):10602-14. PubMed ID: 26966177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of ArlI, ArlJ, and CirA in archaeal type IV pilin-mediated motility regulation.
    Chatterjee P; Garcia MA; Cote JA; Yun K; Legerme GP; Habib R; Tripepi M; Young C; Kulp D; Dyall-Smith M; Pohlschroder M
    J Bacteriol; 2024 Jun; 206(6):e0008924. PubMed ID: 38819156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved type IV pilin signal peptide H-domain is critical for the post-translational regulation of flagella-dependent motility.
    Esquivel RN; Pohlschroder M
    Mol Microbiol; 2014 Aug; 93(3):494-504. PubMed ID: 24945931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilms formed by the archaeon Haloferax volcanii exhibit cellular differentiation and social motility, and facilitate horizontal gene transfer.
    Chimileski S; Franklin MJ; Papke RT
    BMC Biol; 2014 Aug; 12():65. PubMed ID: 25124934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haloferax volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion.
    Tripepi M; Imam S; Pohlschröder M
    J Bacteriol; 2010 Jun; 192(12):3093-102. PubMed ID: 20363933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immersed Liquid Biofilm and Honeycomb Pattern Formations in Haloferax volcanii.
    Mutan Z; Schiller H; Schulze S; Pohlschroder M
    Methods Mol Biol; 2022; 2522():387-395. PubMed ID: 36125765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Archaeal Tubulin-like Proteins Modify Cell Shape in
    Cooper A; Makkay AM; Papke RT
    Genes (Basel); 2023 Sep; 14(10):. PubMed ID: 37895209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Several One-Domain Zinc Finger µ-Proteins of Haloferax Volcanii Are Important for Stress Adaptation, Biofilm Formation, and Swarming.
    Nagel C; Machulla A; Zahn S; Soppa J
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31083437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Archaeal type IV pili and their involvement in biofilm formation.
    Pohlschroder M; Esquivel RN
    Front Microbiol; 2015; 6():190. PubMed ID: 25852657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced Understanding of Prokaryotic Biofilm Formation through Use of a Cost-Effective and Versatile Multipanel Adhesion (mPAD) Mount.
    Schulze S; Schiller H; Solomonic J; Telhan O; Costa K; Pohlschroder M
    Appl Environ Microbiol; 2022 Feb; 88(4):e0228321. PubMed ID: 35191778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type IV pili promote early biofilm formation by Clostridium difficile.
    Maldarelli GA; Piepenbrink KH; Scott AJ; Freiberg JA; Song Y; Achermann Y; Ernst RK; Shirtliff ME; Sundberg EJ; Donnenberg MS; von Rosenvinge EC
    Pathog Dis; 2016 Aug; 74(6):. PubMed ID: 27369898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xanthomonas citri subsp. citri type IV Pilus is required for twitching motility, biofilm development, and adherence.
    Dunger G; Guzzo CR; Andrade MO; Jones JB; Farah CS
    Mol Plant Microbe Interact; 2014 Oct; 27(10):1132-47. PubMed ID: 25180689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel archaeal adhesion pilins with a conserved N terminus.
    Esquivel RN; Xu R; Pohlschroder M
    J Bacteriol; 2013 Sep; 195(17):3808-18. PubMed ID: 23794623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile cell surface structures of archaea.
    Chaudhury P; Quax TEF; Albers SV
    Mol Microbiol; 2018 Feb; 107(3):298-311. PubMed ID: 29194812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two distinct archaeal type IV pili structures formed by proteins with identical sequence.
    Liu J; Eastep GN; Cvirkaite-Krupovic V; Rich-New ST; Kreutzberger MAB; Egelman EH; Krupovic M; Wang F
    Nat Commun; 2024 Jun; 15(1):5049. PubMed ID: 38877064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridging Bacteria and the Gut: Functional Aspects of Type IV Pili.
    Ligthart K; Belzer C; de Vos WM; Tytgat HLP
    Trends Microbiol; 2020 May; 28(5):340-348. PubMed ID: 32298612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited Cross-Complementation Between
    Legerme G; Pohlschroder M
    Front Microbiol; 2019; 10():700. PubMed ID: 31068907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Type IV Pili: dynamic bacterial nanomachines.
    Ellison CK; Whitfield GB; Brun YV
    FEMS Microbiol Rev; 2022 Mar; 46(2):. PubMed ID: 34788436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.