These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37473875)

  • 1. Expanded bioinformatic analysis of Oximouse dataset reveals key putative processes involved in brain aging and cognitive decline.
    Urrutia PJ; Bórquez DA
    Free Radic Biol Med; 2023 Oct; 207():200-211. PubMed ID: 37473875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging.
    Xiao H; Jedrychowski MP; Schweppe DK; Huttlin EL; Yu Q; Heppner DE; Li J; Long J; Mills EL; Szpyt J; He Z; Du G; Garrity R; Reddy A; Vaites LP; Paulo JA; Zhang T; Gray NS; Gygi SP; Chouchani ET
    Cell; 2020 Mar; 180(5):968-983.e24. PubMed ID: 32109415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential cysteine labeling and global label-free proteomics reveals an altered metabolic state in skeletal muscle aging.
    McDonagh B; Sakellariou GK; Smith NT; Brownridge P; Jackson MJ
    J Proteome Res; 2014 Nov; 13(11):5008-21. PubMed ID: 25181601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome-wide quantitative analysis of redox cysteine availability in the Drosophila melanogaster eye reveals oxidation of phototransduction machinery during blue light exposure and age.
    Stanhope SC; Brandwine-Shemmer T; Blum HR; Doud EH; Jannasch A; Mosley AL; Minke B; Weake VM
    Redox Biol; 2023 Jul; 63():102723. PubMed ID: 37146512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox responses are preserved across muscle fibres with differential susceptibility to aging.
    Smith NT; Soriano-Arroquia A; Goljanek-Whysall K; Jackson MJ; McDonagh B
    J Proteomics; 2018 Apr; 177():112-123. PubMed ID: 29438851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.
    Yao C; Behring JB; Shao D; Sverdlov AL; Whelan SA; Elezaby A; Yin X; Siwik DA; Seta F; Costello CE; Cohen RA; Matsui R; Colucci WS; McComb ME; Bachschmid MM
    PLoS One; 2015; 10(12):e0144025. PubMed ID: 26642319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox proteomics: from bench to bedside.
    Ckless K
    Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress and aging.
    Dröge W
    Adv Exp Med Biol; 2003; 543():191-200. PubMed ID: 14713123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress.
    van der Reest J; Lilla S; Zheng L; Zanivan S; Gottlieb E
    Nat Commun; 2018 Apr; 9(1):1581. PubMed ID: 29679077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia.
    Izquierdo-Álvarez A; Ramos E; Villanueva J; Hernansanz-Agustín P; Fernández-Rodríguez R; Tello D; Carrascal M; Martínez-Ruiz A
    J Proteomics; 2012 Sep; 75(17):5449-62. PubMed ID: 22800641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster.
    Menger KE; James AM; Cochemé HM; Harbour ME; Chouchani ET; Ding S; Fearnley IM; Partridge L; Murphy MP
    Cell Rep; 2015 Jun; 11(12):1856-65. PubMed ID: 26095360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes.
    Held JM; Gibson BW
    Mol Cell Proteomics; 2012 Apr; 11(4):R111.013037. PubMed ID: 22159599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of reactive oxygen species-mediated signaling in aging.
    Labunskyy VM; Gladyshev VN
    Antioxid Redox Signal; 2013 Oct; 19(12):1362-72. PubMed ID: 22901002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species.
    Lushchak OV; Piroddi M; Galli F; Lushchak VI
    Redox Rep; 2014 Jan; 19(1):8-15. PubMed ID: 24266943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox proteomics combined with proximity labeling enables monitoring of localized cysteine oxidation in cells.
    Kisty EA; Falco JA; Weerapana E
    Cell Chem Biol; 2023 Mar; 30(3):321-336.e6. PubMed ID: 36889310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Probes for Redox Signaling and Oxidative Stress.
    Abo M; Weerapana E
    Antioxid Redox Signal; 2019 Apr; 30(10):1369-1386. PubMed ID: 29132214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine Proteome Reveals Response to Endogenous Oxidative Stress in
    Hamitouche F; Armengaud J; Dedieu L; Duport C
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.