These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37473875)

  • 21. Cysteine Network (CYSTEINET) Dysregulation in Parkinson's Disease: Role of N-acetylcysteine.
    Martínez-Banaclocha M
    Curr Drug Metab; 2016; 17(4):368-85. PubMed ID: 26651975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox proteomics in aging rat brain: involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process.
    Perluigi M; Di Domenico F; Giorgi A; Schininà ME; Coccia R; Cini C; Bellia F; Cambria MT; Cornelius C; Butterfield DA; Calabrese V
    J Neurosci Res; 2010 Dec; 88(16):3498-507. PubMed ID: 20936692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.
    Boronat S; Domènech A; Hidalgo E
    Antioxid Redox Signal; 2017 Mar; 26(7):329-344. PubMed ID: 27089838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential.
    Go YM; Park H; Koval M; Orr M; Reed M; Liang Y; Smith D; Pohl J; Jones DP
    Free Radic Biol Med; 2010 Jan; 48(2):275-83. PubMed ID: 19879942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox regulation of cysteine-dependent enzymes.
    Guttmann RP
    J Anim Sci; 2010 Apr; 88(4):1297-306. PubMed ID: 19820057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomic analysis of mitochondria from senescent Podospora anserina casts new light on ROS dependent aging mechanisms.
    Plohnke N; Hamann A; Poetsch A; Osiewacz HD; Rögner M; Rexroth S
    Exp Gerontol; 2014 Aug; 56():13-25. PubMed ID: 24556281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A direct way of redox sensing.
    Benoit R; Auer M
    RNA Biol; 2011; 8(1):18-23. PubMed ID: 21220941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox metabolism: ROS as specific molecular regulators of cell signaling and function.
    Lennicke C; Cochemé HM
    Mol Cell; 2021 Sep; 81(18):3691-3707. PubMed ID: 34547234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative stress and aberrant signaling in aging and cognitive decline.
    Dröge W; Schipper HM
    Aging Cell; 2007 Jun; 6(3):361-70. PubMed ID: 17517043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cysteines under ROS attack in plants: a proteomics view.
    Akter S; Huang J; Waszczak C; Jacques S; Gevaert K; Van Breusegem F; Messens J
    J Exp Bot; 2015 May; 66(10):2935-44. PubMed ID: 25750420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exercise stress leads to an acute loss of mitochondrial proteins and disruption of redox control in skeletal muscle of older subjects: An underlying decrease in resilience with aging?
    Pugh JN; Stretton C; McDonagh B; Brownridge P; McArdle A; Jackson MJ; Close GL
    Free Radic Biol Med; 2021 Dec; 177():88-99. PubMed ID: 34655746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.
    Harris C; Shuster DZ; Roman Gomez R; Sant KE; Reed MS; Pohl J; Hansen JM
    Free Radic Biol Med; 2013 Oct; 63():325-37. PubMed ID: 23736079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-throughput proteomic-based identification of oxidatively induced protein carbonylation in mouse brain.
    Soreghan BA; Yang F; Thomas SN; Hsu J; Yang AJ
    Pharm Res; 2003 Nov; 20(11):1713-20. PubMed ID: 14661913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
    Wani R; Murray BW
    Methods Mol Biol; 2017; 1558():191-212. PubMed ID: 28150239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant Chloroplast Stress Response: Insights from Thiol Redox Proteomics.
    Yu J; Li Y; Qin Z; Guo S; Li Y; Miao Y; Song C; Chen S; Dai S
    Antioxid Redox Signal; 2020 Jul; 33(1):35-57. PubMed ID: 31989831
    [No Abstract]   [Full Text] [Related]  

  • 37. Proteomic Profile of Mouse Brain Aging Contributions to Mitochondrial Dysfunction, DNA Oxidative Damage, Loss of Neurotrophic Factor, and Synaptic and Ribosomal Proteins.
    Li Y; Yu H; Chen C; Li S; Zhang Z; Xu H; Zhu F; Liu J; Spencer PS; Dai Z; Yang X
    Oxid Med Cell Longev; 2020; 2020():5408452. PubMed ID: 32587661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identifying Redox-Sensitive Cysteine Residues in Mitochondria.
    Kisty EA; Saart EC; Weerapana E
    Antioxidants (Basel); 2023 Apr; 12(5):. PubMed ID: 37237858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Quantitative Proteomics Approach to Gain Insight into NRF2-KEAP1 Skeletal Muscle System and Its Cysteine Redox Regulation.
    Abu R; Yu L; Kumar A; Gao L; Kumar V
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global Protein Oxidation Profiling Suggests Efficient Mitochondrial Proteome Homeostasis During Aging.
    Ramallo Guevara C; Philipp O; Hamann A; Werner A; Osiewacz HD; Rexroth S; Rögner M; Poetsch A
    Mol Cell Proteomics; 2016 May; 15(5):1692-709. PubMed ID: 26884511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.