These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 37474)

  • 1. Mitochondrial respiratory activity during early stage of pressure induced hypertrophy. An in situ study of rat left ventricular myocardium.
    Moravec J; Laplace M; Renault G; Corsin A; Hatt PY
    Pathol Biol (Paris); 1979 Jan; 27(1):51-9. PubMed ID: 37474
    [No Abstract]   [Full Text] [Related]  

  • 2. Mitochondria from the left heart ventricles of both normotensive and spontaneously hypertensive rats oxidize externally added NADH mostly via a novel malate/oxaloacetate shuttle as reconstructed in vitro.
    Atlante A; Seccia TM; De Bari L; Marra E; Passarella S
    Int J Mol Med; 2006 Jul; 18(1):177-86. PubMed ID: 16786170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential changes in respiratory capacity and ischemia tolerance of isolated mitochondria from atrophied and hypertrophied hearts.
    Bugger H; Chemnitius JM; Doenst T
    Metabolism; 2006 Aug; 55(8):1097-106. PubMed ID: 16839847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myocardial characteristics of pressure overload hypertrophy. A structural and functional study.
    Breisch EA; White FC; Bloor CM
    Lab Invest; 1984 Sep; 51(3):333-42. PubMed ID: 6236333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: involvement of nitric oxide synthase and protein tyrosine nitration.
    Dong F; Zhang X; Culver B; Chew HG; Kelley RO; Ren J
    Clin Sci (Lond); 2005 Sep; 109(3):277-86. PubMed ID: 15877545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial complex I dysfunction and altered NAD(P)H kinetics in rat myocardium in cardiac right ventricular hypertrophy and failure.
    Wüst RC; de Vries HJ; Wintjes LT; Rodenburg RJ; Niessen HW; Stienen GJ
    Cardiovasc Res; 2016 Sep; 111(4):362-72. PubMed ID: 27402402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role of fatty acid oxidation in cardiac hypertrophy.
    Bressler R; Goldman S
    Cardioscience; 1993 Sep; 4(3):133-42. PubMed ID: 8400020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Occurrence of 2 b5 cytochromes in rat liver microsomes].
    Archakov AI; Devichenskiĭ VM; Severina VA
    Biokhimiia; 1969; 34(4):782-90. PubMed ID: 4391111
    [No Abstract]   [Full Text] [Related]  

  • 9. Sarcoplasmic reticular and mitochondrial calcium transport in cardiac hypertrophy.
    Heyliger CE; Ganguly PK; Dhalla NS
    Can J Cardiol; 1985; 1(6):401-8. PubMed ID: 2944571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide radical release into the cytoplasm of heart cells by an NADH-driven oxygen activator.
    Nohl H
    Basic Life Sci; 1988; 49():898-903. PubMed ID: 2855012
    [No Abstract]   [Full Text] [Related]  

  • 11. The mechanism of energy conservation in the mitochondrial respiratory chain.
    Slater EC
    Harvey Lect; 1971-1972; 66():19-42. PubMed ID: 4949246
    [No Abstract]   [Full Text] [Related]  

  • 12. Characteristics of chronic left ventricular hypertrophy induced by subcoronary valvular aortic stenosis. II. Response to ischemia.
    Attarian DE; Jones RN; Currie WD; Hill RC; Sink JD; Olsen CO; Chitwood WR; Wechsler AS
    J Thorac Cardiovasc Surg; 1981 Mar; 81(3):389-95. PubMed ID: 6450858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rate of pyridine nucleotide oxidation and cytochrome oxidase interaction with intracellular oxygen in hearts from rats with compensated volume overload.
    Moravec J; Moravec M; Hatt PY
    Pflugers Arch; 1981 Dec; 392(2):106-14. PubMed ID: 6275342
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of anthracycline antibiotics on oxygen radical formation in rat heart.
    Doroshow JH
    Cancer Res; 1983 Feb; 43(2):460-72. PubMed ID: 6293697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biphasic oxidation of mitochondrial NAD(P)H.
    Lemeshko VV
    Biochem Biophys Res Commun; 2002 Feb; 291(1):170-5. PubMed ID: 11829479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of oxygen deprivation on cardiac redox systems.
    Kehrer JP; Paraidathathu T; Lund LG
    Proc West Pharmacol Soc; 1993; 36():45-52. PubMed ID: 8378397
    [No Abstract]   [Full Text] [Related]  

  • 17. The glutamate dehydrogenase system and the redox state of mitochondrial free nicotinamide adenine dinucleotide in myocardium.
    Nuutinen EM; Hiltunen JK; Hassinen IE
    FEBS Lett; 1981 Jun; 128(2):356-60. PubMed ID: 7262326
    [No Abstract]   [Full Text] [Related]  

  • 18. The identification and control of metabolic states.
    Chance B
    Behav Sci; 1970 Jan; 15(1):1-23. PubMed ID: 4391763
    [No Abstract]   [Full Text] [Related]  

  • 19. [Intracellular pH of the rat heart in chronic hypertrophy].
    Herten W; Albers C
    Verh Dtsch Ges Kreislaufforsch; 1975; 41():298-301. PubMed ID: 7886
    [No Abstract]   [Full Text] [Related]  

  • 20. Respiratory chain O2 requirements and the metabolic answer to diffuse ischemia of mechanically overloaded left ventricular myocardium.
    Moravec J; Nzonzi J; Bowe C; Feuvray D
    Adv Exp Med Biol; 1984; 169():359-67. PubMed ID: 6328903
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.