These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A new animal model of choroidal neovascularization. Kiilgaard JF; Andersen MV; Wiencke AK; Scherfig E; la Cour M; Tezel TH; Prause JU Acta Ophthalmol Scand; 2005 Dec; 83(6):697-704. PubMed ID: 16396647 [TBL] [Abstract][Full Text] [Related]
4. Optimization of laser-induced choroidal neovascularization in African green monkeys. Goody RJ; Hu W; Shafiee A; Struharik M; Bartels S; López FJ; Lawrence MS Exp Eye Res; 2011 Jun; 92(6):464-72. PubMed ID: 21414311 [TBL] [Abstract][Full Text] [Related]
5. Clinical and histological aspects of CNV formation: studies in an animal model. Lassota N Acta Ophthalmol; 2008 Sep; 86 Thesis 2():1-24. PubMed ID: 18783494 [TBL] [Abstract][Full Text] [Related]
6. Surgical induction of choroidal neovascularization in a porcine model. Lassota N; Kiilgaard JF; Prause JU; Qvortrup K; Scherfig E; la Cour M Graefes Arch Clin Exp Ophthalmol; 2007 Aug; 245(8):1189-98. PubMed ID: 17219108 [TBL] [Abstract][Full Text] [Related]
7. Natural history of choroidal neovascularization after surgical induction in an animal model. Lassota N; Kiilgaard JF; la Cour M; Scherfig E; Prause JU Acta Ophthalmol; 2008 Aug; 86(5):495-503. PubMed ID: 18752525 [TBL] [Abstract][Full Text] [Related]
8. Subretinal Saline Protects the Neuroretina From Thermic Damage During Laser Induction of Experimental Choroidal Neovascularization in Pigs. Hansen S; Askou AL; la Cour M; Corydon TJ; Bek T Transl Vis Sci Technol; 2021 Jun; 10(7):29. PubMed ID: 34185056 [TBL] [Abstract][Full Text] [Related]
9. Mobile Laser Indirect Ophthalmoscope: For the Induction of Choroidal Neovascularization in a Mouse Model. Weinberger D; Bor-Shavit E; Barliya T; Dahbash M; Kinrot O; Gaton DD; Nisgav Y; Livnat T Curr Eye Res; 2017 Nov; 42(11):1545-1551. PubMed ID: 28933966 [TBL] [Abstract][Full Text] [Related]
10. Repeated retinal photocoagulation in monkeys for the optimization of a laser-induced choroidal neovascularization model. Lin X; Wang Q; He M Exp Eye Res; 2019 Jul; 184():1-7. PubMed ID: 30928489 [TBL] [Abstract][Full Text] [Related]
11. Clinical and histological findings after intravitreal injection of bevacizumab (Avastin) in a porcine model of choroidal neovascularization. Lassota N; Prause JU; Scherfig E; Kiilgaard JF; la Cour M Acta Ophthalmol; 2010 May; 88(3):300-8. PubMed ID: 19416113 [TBL] [Abstract][Full Text] [Related]
12. Suppression and regression of choroidal neovascularization by polyamine analogues. Lima e Silva R; Saishin Y; Saishin Y; Akiyama H; Kachi S; Aslam S; Rogers B; Deering T; Gong YY; Hackett SF; Lai H; Frydman BJ; Valasinas A; Marton LJ; Campochiaro PA Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3323-30. PubMed ID: 16123436 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of CXCR4 inhibition in the prevention and intervention model of laser-induced choroidal neovascularization. Lee E; Rewolinski D Invest Ophthalmol Vis Sci; 2010 Jul; 51(7):3666-72. PubMed ID: 20042641 [TBL] [Abstract][Full Text] [Related]
14. In Vivo Multimodal Imaging and Analysis of Mouse Laser-Induced Choroidal Neovascularization Model. Ragauskas S; Kielczewski E; Vance J; Kaja S; Kalesnykas G J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443029 [TBL] [Abstract][Full Text] [Related]
15. Effect of chromogranin A-derived vasostatin-1 on laser-induced choroidal neovascularization in the mouse. Maestroni S; Maestroni A; Ceglia S; Tremolada G; Mancino M; Sacchi A; Lattanzio R; Zucchiatti I; Corti A; Bandello F; Zerbini G Acta Ophthalmol; 2015 May; 93(3):e218-22. PubMed ID: 25271003 [TBL] [Abstract][Full Text] [Related]
16. Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization. Meyer JH; Larsen PP; Strack C; Harmening WM; Krohne TU; Holz FG; Schmitz-Valckenberg S Exp Eye Res; 2019 Jul; 184():162-171. PubMed ID: 31002822 [TBL] [Abstract][Full Text] [Related]
17. A Mouse Model for Laser-induced Choroidal Neovascularization. Shah RS; Soetikno BT; Lajko M; Fawzi AA J Vis Exp; 2015 Dec; (106):e53502. PubMed ID: 26779879 [TBL] [Abstract][Full Text] [Related]
18. Comparison between optical coherence tomography angiography and immunolabeling for evaluation of laser-induced choroidal neovascularization. Nakagawa K; Yamada H; Mori H; Toyama K; Takahashi K PLoS One; 2018; 13(8):e0201958. PubMed ID: 30092067 [TBL] [Abstract][Full Text] [Related]
19. In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography. Giani A; Thanos A; Roh MI; Connolly E; Trichonas G; Kim I; Gragoudas E; Vavvas D; Miller JW Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3880-7. PubMed ID: 21296820 [TBL] [Abstract][Full Text] [Related]
20. Assessment of laser induction of Bruch's membrane disruption in monkey by spectral-domain optical coherence tomography. Wang Q; Lin X; Xiang W; Xiao W; He M Br J Ophthalmol; 2015 Jan; 99(1):119-24. PubMed ID: 25336578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]