BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37474015)

  • 1. Porcine models of choroidal neovascularization: A systematic review.
    Jakobsen TS; Fabian-Jessing BK; Hansen S; Bek T; Askou AL; Corydon TJ
    Exp Eye Res; 2023 Sep; 234():109590. PubMed ID: 37474015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Animal Models of Choroidal Neovascularization: A Systematic Review.
    Fabian-Jessing BK; Jakobsen TS; Jensen EG; Alsing S; Hansen S; Aagaard L; Askou AL; Bek T; Corydon TJ
    Invest Ophthalmol Vis Sci; 2022 Aug; 63(9):11. PubMed ID: 35943733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new animal model of choroidal neovascularization.
    Kiilgaard JF; Andersen MV; Wiencke AK; Scherfig E; la Cour M; Tezel TH; Prause JU
    Acta Ophthalmol Scand; 2005 Dec; 83(6):697-704. PubMed ID: 16396647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of laser-induced choroidal neovascularization in African green monkeys.
    Goody RJ; Hu W; Shafiee A; Struharik M; Bartels S; López FJ; Lawrence MS
    Exp Eye Res; 2011 Jun; 92(6):464-72. PubMed ID: 21414311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical and histological aspects of CNV formation: studies in an animal model.
    Lassota N
    Acta Ophthalmol; 2008 Sep; 86 Thesis 2():1-24. PubMed ID: 18783494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surgical induction of choroidal neovascularization in a porcine model.
    Lassota N; Kiilgaard JF; Prause JU; Qvortrup K; Scherfig E; la Cour M
    Graefes Arch Clin Exp Ophthalmol; 2007 Aug; 245(8):1189-98. PubMed ID: 17219108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural history of choroidal neovascularization after surgical induction in an animal model.
    Lassota N; Kiilgaard JF; la Cour M; Scherfig E; Prause JU
    Acta Ophthalmol; 2008 Aug; 86(5):495-503. PubMed ID: 18752525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subretinal Saline Protects the Neuroretina From Thermic Damage During Laser Induction of Experimental Choroidal Neovascularization in Pigs.
    Hansen S; Askou AL; la Cour M; Corydon TJ; Bek T
    Transl Vis Sci Technol; 2021 Jun; 10(7):29. PubMed ID: 34185056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobile Laser Indirect Ophthalmoscope: For the Induction of Choroidal Neovascularization in a Mouse Model.
    Weinberger D; Bor-Shavit E; Barliya T; Dahbash M; Kinrot O; Gaton DD; Nisgav Y; Livnat T
    Curr Eye Res; 2017 Nov; 42(11):1545-1551. PubMed ID: 28933966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeated retinal photocoagulation in monkeys for the optimization of a laser-induced choroidal neovascularization model.
    Lin X; Wang Q; He M
    Exp Eye Res; 2019 Jul; 184():1-7. PubMed ID: 30928489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical and histological findings after intravitreal injection of bevacizumab (Avastin) in a porcine model of choroidal neovascularization.
    Lassota N; Prause JU; Scherfig E; Kiilgaard JF; la Cour M
    Acta Ophthalmol; 2010 May; 88(3):300-8. PubMed ID: 19416113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression and regression of choroidal neovascularization by polyamine analogues.
    Lima e Silva R; Saishin Y; Saishin Y; Akiyama H; Kachi S; Aslam S; Rogers B; Deering T; Gong YY; Hackett SF; Lai H; Frydman BJ; Valasinas A; Marton LJ; Campochiaro PA
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3323-30. PubMed ID: 16123436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of CXCR4 inhibition in the prevention and intervention model of laser-induced choroidal neovascularization.
    Lee E; Rewolinski D
    Invest Ophthalmol Vis Sci; 2010 Jul; 51(7):3666-72. PubMed ID: 20042641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo Multimodal Imaging and Analysis of Mouse Laser-Induced Choroidal Neovascularization Model.
    Ragauskas S; Kielczewski E; Vance J; Kaja S; Kalesnykas G
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chromogranin A-derived vasostatin-1 on laser-induced choroidal neovascularization in the mouse.
    Maestroni S; Maestroni A; Ceglia S; Tremolada G; Mancino M; Sacchi A; Lattanzio R; Zucchiatti I; Corti A; Bandello F; Zerbini G
    Acta Ophthalmol; 2015 May; 93(3):e218-22. PubMed ID: 25271003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization.
    Meyer JH; Larsen PP; Strack C; Harmening WM; Krohne TU; Holz FG; Schmitz-Valckenberg S
    Exp Eye Res; 2019 Jul; 184():162-171. PubMed ID: 31002822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Mouse Model for Laser-induced Choroidal Neovascularization.
    Shah RS; Soetikno BT; Lajko M; Fawzi AA
    J Vis Exp; 2015 Dec; (106):e53502. PubMed ID: 26779879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between optical coherence tomography angiography and immunolabeling for evaluation of laser-induced choroidal neovascularization.
    Nakagawa K; Yamada H; Mori H; Toyama K; Takahashi K
    PLoS One; 2018; 13(8):e0201958. PubMed ID: 30092067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography.
    Giani A; Thanos A; Roh MI; Connolly E; Trichonas G; Kim I; Gragoudas E; Vavvas D; Miller JW
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3880-7. PubMed ID: 21296820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of laser induction of Bruch's membrane disruption in monkey by spectral-domain optical coherence tomography.
    Wang Q; Lin X; Xiang W; Xiao W; He M
    Br J Ophthalmol; 2015 Jan; 99(1):119-24. PubMed ID: 25336578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.