BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37474058)

  • 1. A surge of copper accumulation in cell division revealed its cyclical kinetics in synchronized green alga Chlamydomonas reinhardtii.
    Deng S; Wang WX
    Sci Total Environ; 2023 Nov; 899():165566. PubMed ID: 37474058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct function of Chlamydomonas CTRA-CTR transporters in Cu assimilation and intracellular mobilization.
    Strenkert D; Schmollinger S; Paruthiyil S; Brown BC; Green S; Shafer CM; Salomé P; Nelson H; Blaby-Haas CE; Moseley JL; Merchant SS
    Metallomics; 2024 Mar; 16(3):. PubMed ID: 38439674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation.
    Page MD; Kropat J; Hamel PP; Merchant SS
    Plant Cell; 2009 Mar; 21(3):928-43. PubMed ID: 19318609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell cycle-dependent Cu uptake explained the heterogenous responses of Chlamydomonas to Cu exposure.
    Wang X; Wang WX
    Environ Pollut; 2023 Feb; 319():121013. PubMed ID: 36608730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct function of Chlamydomonas CTRA-CTR transporters in Cu assimilation and intracellular mobilization.
    Strenkert D; Schmollinger S; Paruthiyil S; Brown BC; Green S; Shafer CM; Salomé P; Nelson H; Blaby-Haas CE; Moseley JL; Merchant SS
    bioRxiv; 2023 Oct; ():. PubMed ID: 37905083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of the biotic ligand model in metal mixtures: bioaccumulation of lead and copper.
    Chen Z; Zhu L; Wilkinson KJ
    Environ Sci Technol; 2010 May; 44(9):3580-6. PubMed ID: 20384345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii.
    Sánchez-Marín P; Fortin C; Campbell PG
    Biometals; 2014 Feb; 27(1):173-81. PubMed ID: 24442517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Cu and pb on Ni bioaccumulation by Chlamydomonas reinhardtii: Validation of the biotic ligand model in binary metal Mixtures.
    Flouty R; Khalaf G
    Ecotoxicol Environ Saf; 2015 Mar; 113():79-86. PubMed ID: 25483376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular Biotransformation of Cu(II)/Cu(I) Explained High Cu Toxicity to Phytoplankton
    Wang X; Wang WX
    Environ Sci Technol; 2021 Nov; 55(21):14772-14781. PubMed ID: 34647741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach.
    Jamers A; Blust R; De Coen W; Griffin JL; Jones OA
    Biometals; 2013 Oct; 26(5):731-40. PubMed ID: 23775669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of Cu uptake and early transcriptome responses in the green microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii.
    Beauvais-Flück R; Slaveykova VI; Cosio C
    Environ Pollut; 2019 Jul; 250():331-337. PubMed ID: 31003145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of trace elements in the toxicity of copper to
    Chen H; Shen X; Ying Y; Li X; Chen L; Shen C; Wen Y
    Environ Sci Process Impacts; 2022 Apr; 24(4):576-585. PubMed ID: 35266473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ni induces the CRR1-dependent regulon revealing overlap and distinction between hypoxia and Cu deficiency responses in Chlamydomonas reinhardtii.
    Blaby-Haas CE; Castruita M; Fitz-Gibbon ST; Kropat J; Merchant SS
    Metallomics; 2016 Jul; 8(7):679-91. PubMed ID: 27172123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii.
    Wang Y; Cheng ZZ; Chen X; Zheng Q; Yang ZM
    Plant Sci; 2015 Nov; 240():120-9. PubMed ID: 26475193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights in copper handling strategies in the green alga Chlamydomonas reinhardtii under low-iron condition.
    Kochoni E; Aharchaou I; Ohlund L; Rosabal M; Sleno L; Fortin C
    Metallomics; 2022 Jun; 14(6):. PubMed ID: 35524697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paralytic shellfish toxins inhibit copper uptake in Chlamydomonas reinhardtii.
    Cusick KD; Wetzel RK; Minkin SC; Dodani SC; Wilhelm SW; Sayler GS
    Environ Toxicol Chem; 2013 Jun; 32(6):1388-95. PubMed ID: 23423950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Regulation of Intracellular Labile Cu(I)/Cu(II) Cycle in Microalgae
    Deng S; Wang WX
    Environ Sci Technol; 2024 Mar; 58(12):5255-5266. PubMed ID: 38471003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of iron in gene expression and in the modulation of copper uptake in a freshwater alga: Insights on Cu and Fe assimilation pathways.
    Kochoni E; Doose C; Gonzalez P; Fortin C
    Environ Pollut; 2022 Jul; 305():119311. PubMed ID: 35439593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of CRR1-targeted copper deficiency response in
    Wang S; Lv J; Zhang S
    Nanotoxicology; 2019 May; 13(4):447-454. PubMed ID: 30704326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antagonistic and synergistic effects of light irradiation on the effects of copper on Chlamydomonas reinhardtii.
    Cheloni G; Cosio C; Slaveykova VI
    Aquat Toxicol; 2014 Oct; 155():275-82. PubMed ID: 25072593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.