These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37474104)

  • 1. A conserved arginine within the αC-helix of Erk1/2 is a latch of autoactivation and of oncogenic capabilities.
    Soudah N; Baskin A; Smorodinsky-Atias K; Beenstock J; Ganon Y; Hayouka R; Aboraya M; Livnah O; Ilouz R; Engelberg D
    J Biol Chem; 2023 Sep; 299(9):105072. PubMed ID: 37474104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tighter αC-helix-αL16-helix interactions seem to make p38α less prone to activation by autophosphorylation than Hog1.
    Tesker M; Selamat SE; Beenstock J; Hayouka R; Livnah O; Engelberg D
    Biosci Rep; 2016; 36(2):. PubMed ID: 26987986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy.
    Lorenz K; Schmitt JP; Schmitteckert EM; Lohse MJ
    Nat Med; 2009 Jan; 15(1):75-83. PubMed ID: 19060905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interference with ERK(Thr188) phosphorylation impairs pathological but not physiological cardiac hypertrophy.
    Ruppert C; Deiss K; Herrmann S; Vidal M; Oezkur M; Gorski A; Weidemann F; Lohse MJ; Lorenz K
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7440-5. PubMed ID: 23589880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of human mono-phosphorylated ERK1 at Tyr204.
    Kinoshita T; Yoshida I; Nakae S; Okita K; Gouda M; Matsubara M; Yokota K; Ishiguro H; Tada T
    Biochem Biophys Res Commun; 2008 Dec; 377(4):1123-7. PubMed ID: 18983981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variants of the yeast MAPK Mpk1 are fully functional independently of activation loop phosphorylation.
    Goshen-Lago T; Goldberg-Carp A; Melamed D; Darlyuk-Saadon I; Bai C; Ahn NG; Admon A; Engelberg D
    Mol Biol Cell; 2016 Sep; 27(17):2771-83. PubMed ID: 27413009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsically active variants of Erk oncogenically transform cells and disclose unexpected autophosphorylation capability that is independent of TEY phosphorylation.
    Smorodinsky-Atias K; Goshen-Lago T; Goldberg-Carp A; Melamed D; Shir A; Mooshayef N; Beenstock J; Karamansha Y; Darlyuk-Saadon I; Livnah O; Ahn NG; Admon A; Engelberg D
    Mol Biol Cell; 2016 Mar; 27(6):1026-39. PubMed ID: 26658610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear extracellular signal-regulated kinase 1 and 2 translocation is mediated by casein kinase 2 and accelerated by autophosphorylation.
    Plotnikov A; Chuderland D; Karamansha Y; Livnah O; Seger R
    Mol Cell Biol; 2011 Sep; 31(17):3515-30. PubMed ID: 21730285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a DEF-type docking domain for extracellular signal-regulated kinases 1/2 that directs phosphorylation and turnover of the BH3-only protein BimEL.
    Ley R; Hadfield K; Howes E; Cook SJ
    J Biol Chem; 2005 May; 280(18):17657-63. PubMed ID: 15728578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitogen-activated protein kinase (MAPK) phosphatase 3-mediated cross-talk between MAPKs ERK2 and p38alpha.
    Zhang YY; Wu JW; Wang ZX
    J Biol Chem; 2011 May; 286(18):16150-62. PubMed ID: 21454500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of intrinsically active (MEK-independent) variants of the ERK family of mitogen-activated protein (MAP) kinases.
    Levin-Salomon V; Kogan K; Ahn NG; Livnah O; Engelberg D
    J Biol Chem; 2008 Dec; 283(50):34500-10. PubMed ID: 18829462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depletion of ERK2 but not ERK1 abrogates oncogenic Ras-induced senescence.
    Shin J; Yang J; Lee JC; Baek KH
    Cell Signal; 2013 Dec; 25(12):2540-7. PubMed ID: 23993963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of domain closure for the autoactivation of ERK2.
    Barr D; Oashi T; Burkhard K; Lucius S; Samadani R; Zhang J; Shapiro P; MacKerell AD; van der Vaart A
    Biochemistry; 2011 Sep; 50(37):8038-48. PubMed ID: 21842857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The WW domain of the scaffolding protein IQGAP1 is neither necessary nor sufficient for binding to the MAPKs ERK1 and ERK2.
    Bardwell AJ; Lagunes L; Zebarjedi R; Bardwell L
    J Biol Chem; 2017 May; 292(21):8750-8761. PubMed ID: 28396345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory roles of conserved phosphorylation sites in the activation T-loop of the MAP kinase ERK1.
    Lai S; Pelech S
    Mol Biol Cell; 2016 Mar; 27(6):1040-50. PubMed ID: 26823016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G protein-coupled estrogen receptor 1 (GPER1)/GPR30 increases ERK1/2 activity through PDZ motif-dependent and -independent mechanisms.
    Gonzalez de Valdivia E; Broselid S; Kahn R; Olde B; Leeb-Lundberg LMF
    J Biol Chem; 2017 Jun; 292(24):9932-9943. PubMed ID: 28450397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of ERK5 on Thr732 is associated with ERK5 nuclear localization and ERK5-dependent transcription.
    Honda T; Obara Y; Yamauchi A; Couvillon AD; Mason JJ; Ishii K; Nakahata N
    PLoS One; 2015; 10(2):e0117914. PubMed ID: 25689862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The gatekeeper residue controls autoactivation of ERK2 via a pathway of intramolecular connectivity.
    Emrick MA; Lee T; Starkey PJ; Mumby MC; Resing KA; Ahn NG
    Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18101-6. PubMed ID: 17114285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erk1/2-dependent phosphorylation of PKCalpha at threonine 638 in hippocampal 5-HT(1A) receptor-mediated signaling.
    Debata PR; Ranasinghe B; Berliner A; Curcio GM; Tantry SJ; Ponimaskin E; Banerjee P
    Biochem Biophys Res Commun; 2010 Jul; 397(3):401-6. PubMed ID: 20513439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MSK1 activity is controlled by multiple phosphorylation sites.
    McCoy CE; Campbell DG; Deak M; Bloomberg GB; Arthur JS
    Biochem J; 2005 Apr; 387(Pt 2):507-17. PubMed ID: 15568999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.