These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 37474429)
1. Adoptive transfer of Fe Zhang Y; Liu S; Li D; He C; Wang D; Wei M; Zheng S; Li J Colloids Surf B Biointerfaces; 2023 Sep; 229():113452. PubMed ID: 37474429 [TBL] [Abstract][Full Text] [Related]
2. Targeting and repolarizing M2-like tumor-associated macrophage-mediated MR imaging and tumor immunotherapy by biomimetic nanoparticles. Chong L; Jiang YW; Wang D; Chang P; Xu K; Li J J Nanobiotechnology; 2023 Oct; 21(1):401. PubMed ID: 37907987 [TBL] [Abstract][Full Text] [Related]
3. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Han S; Wang W; Wang S; Yang T; Zhang G; Wang D; Ju R; Lu Y; Wang H; Wang L Theranostics; 2021; 11(6):2892-2916. PubMed ID: 33456579 [No Abstract] [Full Text] [Related]
4. Immunomodulation of Tumor Microenvironment by Arginine-Loaded Iron Oxide Nanoparticles for Gaseous Immunotherapy. Wu X; Cheng Y; Zheng R; Xu K; Yan J; Song P; Wang Y; Rauf A; Pan Y; Zhang H ACS Appl Mater Interfaces; 2021 May; 13(17):19825-19835. PubMed ID: 33881837 [TBL] [Abstract][Full Text] [Related]
5. Engineered cyanobacteria-Fe Li Y; Fan Y; Gao J; Zheng S; Xing Y; He C; Ye S; Xia H; Wang G; Pan H; Xia W; Sui M; Wang H; Liu J; Xie M; Xu K; Zhang Y Mater Today Bio; 2024 Oct; 28():101192. PubMed ID: 39221208 [TBL] [Abstract][Full Text] [Related]
6. Tumor microenvironment remodeling via targeted depletion of M2-like tumor-associated macrophages for cancer immunotherapy. Cao Y; Qiao B; Chen Q; Xie Z; Dou X; Xu L; Ran H; Zhang L; Wang Z Acta Biomater; 2023 Apr; 160():239-251. PubMed ID: 36774974 [TBL] [Abstract][Full Text] [Related]
7. Engineering nanoparticles-enabled tumor-associated macrophages repolarization and phagocytosis restoration for enhanced cancer immunotherapy. Gong Y; Gao W; Zhang J; Dong X; Zhu D; Ma G J Nanobiotechnology; 2024 Jun; 22(1):341. PubMed ID: 38890636 [TBL] [Abstract][Full Text] [Related]
8. Shaping Polarization Of Tumor-Associated Macrophages In Cancer Immunotherapy. Gao J; Liang Y; Wang L Front Immunol; 2022; 13():888713. PubMed ID: 35844605 [TBL] [Abstract][Full Text] [Related]
9. Polymersomes-Mediated Delivery of CSF1R Inhibitor to Tumor Associated Macrophages Promotes M2 to M1-Like Macrophage Repolarization. Rodriguez-Perdigon M; Jimaja S; Haeni L; Bruns N; Rothen-Rutishauser B; Rüegg C Macromol Biosci; 2022 Aug; 22(8):e2200168. PubMed ID: 35624036 [TBL] [Abstract][Full Text] [Related]
10. Engineered Extracellular Vesicles Expressing Siglec-10 Camouflaged AIE Photosensitizer to Reprogram Macrophages to Active M1 Phenotype and Present Tumor-Associated Antigens for Photodynamic Immunotherapy. Sun Z; Sun Z; Liu J; Gao X; Jiao L; Zhao Q; Chu Y; Wang X; Deng G; Cai L Small; 2024 Mar; 20(12):e2307147. PubMed ID: 37941517 [TBL] [Abstract][Full Text] [Related]
11. Tumor-associated macrophages employ immunoediting mechanisms in colorectal tumor progression: Current research in Macrophage repolarization immunotherapy. Cheruku S; Rao V; Pandey R; Rao Chamallamudi M; Velayutham R; Kumar N Int Immunopharmacol; 2023 Mar; 116():109569. PubMed ID: 36773572 [TBL] [Abstract][Full Text] [Related]
12. Dual inhibition of CSF1R and MAPK pathways using supramolecular nanoparticles enhances macrophage immunotherapy. Ramesh A; Brouillard A; Kumar S; Nandi D; Kulkarni A Biomaterials; 2020 Jan; 227():119559. PubMed ID: 31670078 [TBL] [Abstract][Full Text] [Related]
13. Multifunctional Redox-Responsive Nanoplatform with Dual Activation of Macrophages and T Cells for Antitumor Immunotherapy. Zhang W; Liu X; Cao S; Zhang Q; Chen X; Luo W; Tan J; Xu X; Tian J; Saw PE; Luo B ACS Nano; 2023 Aug; 17(15):14424-14441. PubMed ID: 37498878 [TBL] [Abstract][Full Text] [Related]
14. Magnetic Resonance Imaging Nanoprobe Quantifies Nitric Oxide for Evaluating M1/M2 Macrophage Polarization and Prognosis of Cancer Treatments. Liu X; Wang M; Jiang Y; Zhang X; Shi C; Zeng F; Qin Y; Ye J; Hu J; Zhou Z ACS Nano; 2023 Dec; 17(24):24854-24866. PubMed ID: 38047965 [TBL] [Abstract][Full Text] [Related]
15. M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors. Choo YW; Kang M; Kim HY; Han J; Kang S; Lee JR; Jeong GJ; Kwon SP; Song SY; Go S; Jung M; Hong J; Kim BS ACS Nano; 2018 Sep; 12(9):8977-8993. PubMed ID: 30133260 [TBL] [Abstract][Full Text] [Related]
16. Anti-CD206 antibody-conjugated Fe Zhou Y; Que KT; Tang HM; Zhang P; Fu QM; Liu ZJ Oncol Lett; 2020 Dec; 20(6):298. PubMed ID: 33101492 [TBL] [Abstract][Full Text] [Related]
17. Recent Progress on Nanomedicine-Mediated Repolarization of Tumor-Associated Macrophages for Cancer Immunotherapy. Zhang JY; Su YH; Wang X; Yao X; Du JZ Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(5):e2001. PubMed ID: 39425549 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic Iron-Based Nanoparticles Remodel Immunosuppressive Tumor Microenvironment for Metabolic Immunotherapy. Zhang W; Li L; Wu Y; Li C; Xu Z; Zhang N; Wang X; Zhao Y; Zu T; He Q; Jiao J; Zheng R Int J Nanomedicine; 2024; 19():9333-9349. PubMed ID: 39286354 [TBL] [Abstract][Full Text] [Related]
19. Cognate Interaction With CD4 Eisel D; Das K; Dickes E; König R; Osen W; Eichmüller SB Front Immunol; 2019; 10():219. PubMed ID: 30853959 [TBL] [Abstract][Full Text] [Related]
20. Arginine-assembly as NO nano-donor prevents the negative feedback of macrophage repolarization by mitochondrial dysfunction for cancer immunotherapy. Zheng X; Liu Y; Liu Y; Zang J; Wang K; Yang Z; Chen N; Sun J; Huang L; Li Y; Xue L; Zhi H; Zhang X; Yu M; Chen S; Dong H; Li Y Biomaterials; 2024 Apr; 306():122474. PubMed ID: 38271788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]