BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37474467)

  • 1. Micro-spatial flood risk assessment in Nagaon district, Assam (India) using GIS-based multi-criteria decision analysis (MCDA) and analytical hierarchy process (AHP).
    Bhuyan MJ; Deka N; Saikia A
    Risk Anal; 2024 Apr; 44(4):817-832. PubMed ID: 37474467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delineation of groundwater potential zones at micro-spatial units of Nagaon district in Assam, India, using GIS-based MCDA and AHP techniques.
    Bhuyan MJ; Deka N
    Environ Sci Pollut Res Int; 2022 Dec; ():. PubMed ID: 36504300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial assessment of flood vulnerability and waterlogging extent in agricultural lands using RS-GIS and AHP technique-a case study of Patan district Gujarat, India.
    Gahalod NSS; Rajeev K; Pant PK; Binjola S; Yadav RL; Meena RL
    Environ Monit Assess; 2024 Mar; 196(4):338. PubMed ID: 38430346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India.
    Pathan AI; Girish Agnihotri P; Said S; Patel D
    Environ Monit Assess; 2022 Jun; 194(7):509. PubMed ID: 35713716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A geospatial approach for assessing urban flood risk zones in Chennai, Tamil Nadu, India.
    Bagyaraj M; Senapathi V; Chung SY; Gopalakrishnan G; Xiao Y; Karthikeyan S; Nadiri AA; Barzegar R
    Environ Sci Pollut Res Int; 2023 Sep; 30(45):100562-100575. PubMed ID: 37639084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A geospatial analysis of flood risk zones in Cyprus: insights from statistical and multi-criteria decision analysis methods.
    Ghanem MAAN; Zaifoglu H
    Environ Sci Pollut Res Int; 2024 May; 31(22):32875-32900. PubMed ID: 38671266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flood risk assessment of Wuhan, China, using a multi-criteria analysis model with the improved AHP-Entropy method.
    Chen Y; Wang D; Zhang L; Guo H; Ma J; Gao W
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):96001-96018. PubMed ID: 37561303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. District flood vulnerability assessment using analytic hierarchy process (AHP) with historical flood events in Bhutan.
    Tempa K
    PLoS One; 2022; 17(6):e0270467. PubMed ID: 35749469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flood vulnerability assessment in the Jamuna river floodplain using multi-criteria decision analysis: A case study in Jamalpur district, Bangladesh.
    Nahin KTK; Islam SB; Mahmud S; Hossain I
    Heliyon; 2023 Mar; 9(3):e14520. PubMed ID: 37020948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping flood susceptibility with PROMETHEE multi-criteria analysis method.
    Plataridis K; Mallios Z
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):41267-41289. PubMed ID: 38847951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flood hazard mapping using geospatial techniques and satellite images-a case study of coastal district of Tamil Nadu.
    Thirumurugan P; Krishnaveni M
    Environ Monit Assess; 2019 Feb; 191(3):193. PubMed ID: 30810867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh.
    Penki R; Basina SS; Tanniru SR
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):99062-99075. PubMed ID: 36087179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel flood risk mapping approach with machine learning considering geomorphic and socio-economic vulnerability dimensions.
    Deroliya P; Ghosh M; Mohanty MP; Ghosh S; Rao KHVD; Karmakar S
    Sci Total Environ; 2022 Dec; 851(Pt 1):158002. PubMed ID: 35985595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urban flood susceptibility analysis of Saroor Nagar Watershed of India using Geomatics-based multi-criteria analysis framework.
    Vaddiraju SC; Talari R
    Environ Sci Pollut Res Int; 2023 Oct; 30(49):107021-107040. PubMed ID: 36520296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping flood vulnerability using an analytical hierarchy process (AHP) in the Metropolis of Mumbai.
    Mann R; Gupta A
    Environ Monit Assess; 2023 Nov; 195(12):1534. PubMed ID: 38008879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference.
    Xiao Y; Yi S; Tang Z
    Sci Total Environ; 2017 Dec; 599-600():1034-1046. PubMed ID: 28511348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing Spatial Flood Vulnerability at Kalapara Upazila in Bangladesh Using an Analytic Hierarchy Process.
    Hoque MA; Tasfia S; Ahmed N; Pradhan B
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30875881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the effect of urbanization on flood hazard zones in Kahramanmaras, Turkey, using flood hazard index and multi-criteria decision analysis.
    Dutal H
    Environ Monit Assess; 2022 Nov; 195(1):92. PubMed ID: 36352156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coastal Flood risk assessment using ensemble multi-criteria decision-making with machine learning approaches.
    Asiri MM; Aldehim G; Alruwais N; Allafi R; Alzahrani I; Nouri AM; Assiri M; Ahmed NA
    Environ Res; 2024 Mar; 245():118042. PubMed ID: 38160971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the association between floods and low birth weight in India: Using the geospatial approach.
    Biswas S; Mondal S; Banerjee A; Alam A; Satpati L
    Sci Total Environ; 2024 Feb; 912():169593. PubMed ID: 38151131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.