These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37474467)
1. Micro-spatial flood risk assessment in Nagaon district, Assam (India) using GIS-based multi-criteria decision analysis (MCDA) and analytical hierarchy process (AHP). Bhuyan MJ; Deka N; Saikia A Risk Anal; 2024 Apr; 44(4):817-832. PubMed ID: 37474467 [TBL] [Abstract][Full Text] [Related]
2. Delineation of groundwater potential zones at micro-spatial units of Nagaon district in Assam, India, using GIS-based MCDA and AHP techniques. Bhuyan MJ; Deka N Environ Sci Pollut Res Int; 2024 Sep; 31(41):54107-54128. PubMed ID: 36504300 [TBL] [Abstract][Full Text] [Related]
3. Spatial assessment of flood vulnerability and waterlogging extent in agricultural lands using RS-GIS and AHP technique-a case study of Patan district Gujarat, India. Gahalod NSS; Rajeev K; Pant PK; Binjola S; Yadav RL; Meena RL Environ Monit Assess; 2024 Mar; 196(4):338. PubMed ID: 38430346 [TBL] [Abstract][Full Text] [Related]
4. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India. Pathan AI; Girish Agnihotri P; Said S; Patel D Environ Monit Assess; 2022 Jun; 194(7):509. PubMed ID: 35713716 [TBL] [Abstract][Full Text] [Related]
5. A geospatial approach for assessing urban flood risk zones in Chennai, Tamil Nadu, India. Bagyaraj M; Senapathi V; Chung SY; Gopalakrishnan G; Xiao Y; Karthikeyan S; Nadiri AA; Barzegar R Environ Sci Pollut Res Int; 2023 Sep; 30(45):100562-100575. PubMed ID: 37639084 [TBL] [Abstract][Full Text] [Related]
6. A geospatial analysis of flood risk zones in Cyprus: insights from statistical and multi-criteria decision analysis methods. Ghanem MAAN; Zaifoglu H Environ Sci Pollut Res Int; 2024 May; 31(22):32875-32900. PubMed ID: 38671266 [TBL] [Abstract][Full Text] [Related]
7. District flood vulnerability assessment using analytic hierarchy process (AHP) with historical flood events in Bhutan. Tempa K PLoS One; 2022; 17(6):e0270467. PubMed ID: 35749469 [TBL] [Abstract][Full Text] [Related]
8. Flood risk assessment of Wuhan, China, using a multi-criteria analysis model with the improved AHP-Entropy method. Chen Y; Wang D; Zhang L; Guo H; Ma J; Gao W Environ Sci Pollut Res Int; 2023 Sep; 30(42):96001-96018. PubMed ID: 37561303 [TBL] [Abstract][Full Text] [Related]
9. Flood vulnerability assessment in the Jamuna river floodplain using multi-criteria decision analysis: A case study in Jamalpur district, Bangladesh. Nahin KTK; Islam SB; Mahmud S; Hossain I Heliyon; 2023 Mar; 9(3):e14520. PubMed ID: 37020948 [TBL] [Abstract][Full Text] [Related]
10. Mapping flood susceptibility with PROMETHEE multi-criteria analysis method. Plataridis K; Mallios Z Environ Sci Pollut Res Int; 2024 Jun; 31(28):41267-41289. PubMed ID: 38847951 [TBL] [Abstract][Full Text] [Related]
11. Flood hazard mapping using geospatial techniques and satellite images-a case study of coastal district of Tamil Nadu. Thirumurugan P; Krishnaveni M Environ Monit Assess; 2019 Feb; 191(3):193. PubMed ID: 30810867 [TBL] [Abstract][Full Text] [Related]
12. Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh. Penki R; Basina SS; Tanniru SR Environ Sci Pollut Res Int; 2023 Sep; 30(44):99062-99075. PubMed ID: 36087179 [TBL] [Abstract][Full Text] [Related]
13. A novel flood risk mapping approach with machine learning considering geomorphic and socio-economic vulnerability dimensions. Deroliya P; Ghosh M; Mohanty MP; Ghosh S; Rao KHVD; Karmakar S Sci Total Environ; 2022 Dec; 851(Pt 1):158002. PubMed ID: 35985595 [TBL] [Abstract][Full Text] [Related]
14. Urban flood susceptibility analysis of Saroor Nagar Watershed of India using Geomatics-based multi-criteria analysis framework. Vaddiraju SC; Talari R Environ Sci Pollut Res Int; 2023 Oct; 30(49):107021-107040. PubMed ID: 36520296 [TBL] [Abstract][Full Text] [Related]
15. Mapping flood vulnerability using an analytical hierarchy process (AHP) in the Metropolis of Mumbai. Mann R; Gupta A Environ Monit Assess; 2023 Nov; 195(12):1534. PubMed ID: 38008879 [TBL] [Abstract][Full Text] [Related]
16. Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference. Xiao Y; Yi S; Tang Z Sci Total Environ; 2017 Dec; 599-600():1034-1046. PubMed ID: 28511348 [TBL] [Abstract][Full Text] [Related]
17. Assessing Spatial Flood Vulnerability at Kalapara Upazila in Bangladesh Using an Analytic Hierarchy Process. Hoque MA; Tasfia S; Ahmed N; Pradhan B Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30875881 [TBL] [Abstract][Full Text] [Related]
18. Determining the effect of urbanization on flood hazard zones in Kahramanmaras, Turkey, using flood hazard index and multi-criteria decision analysis. Dutal H Environ Monit Assess; 2022 Nov; 195(1):92. PubMed ID: 36352156 [TBL] [Abstract][Full Text] [Related]
19. Coastal Flood risk assessment using ensemble multi-criteria decision-making with machine learning approaches. Asiri MM; Aldehim G; Alruwais N; Allafi R; Alzahrani I; Nouri AM; Assiri M; Ahmed NA Environ Res; 2024 Mar; 245():118042. PubMed ID: 38160971 [TBL] [Abstract][Full Text] [Related]
20. Investigating the association between floods and low birth weight in India: Using the geospatial approach. Biswas S; Mondal S; Banerjee A; Alam A; Satpati L Sci Total Environ; 2024 Feb; 912():169593. PubMed ID: 38151131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]