These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37474560)

  • 1. Research on fast-charging battery thermal management system based on refrigerant direct cooling.
    Dai N; Long J
    Sci Rep; 2023 Jul; 13(1):11707. PubMed ID: 37474560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Refrigerant Cooling in a Battery Thermal Management System under High Temperature Conditions: A Review.
    Kang Y; Hu Y; Zhang C; Yang K; Zhang Q
    ACS Omega; 2024 Jun; 9(24):25591-25609. PubMed ID: 38911816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical review on renewable battery thermal management system using heat pipes.
    Afzal A; Abdul Razak RK; Mohammed Samee AD; Kumar R; Ağbulut Ü; Park SG
    J Therm Anal Calorim; 2023 May; ():1-40. PubMed ID: 37361725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fast-charging properties of micro lithium-ion batteries for smart devices.
    Gao X; Zhou H; Li S; Chang S; Lai Y; Zhang Z
    J Colloid Interface Sci; 2022 Jun; 615():141-150. PubMed ID: 35124502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent achievements toward the development of Ni-based layered oxide cathodes for fast-charging Li-ion batteries.
    Zhang Y; Kim JC; Song HW; Lee S
    Nanoscale; 2023 Mar; 15(9):4195-4218. PubMed ID: 36757735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast charging of energy-dense lithium-ion batteries.
    Wang CY; Liu T; Yang XG; Ge S; Stanley NV; Rountree ES; Leng Y; McCarthy BD
    Nature; 2022 Nov; 611(7936):485-490. PubMed ID: 36224388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase Change Nanocapsules Enabling Dual-Mode Thermal Management for Fast-Charging Lithium-Ion Batteries.
    Geng X; Wang C; Chen J; Wang H; Liu W; Hu L; Lei J; Liu Z; He X
    ACS Nano; 2024 Apr; 18(17):11300-11310. PubMed ID: 38637969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A H
    Zhang Y; Hu Y; Wang H; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202405166. PubMed ID: 38600042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the Heat Dissipation Performance of a Lithium-Ion Battery Thermal Management System with CPCM/Liquid Cooling.
    Zeng X; Men Z; Deng F; Chen C
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-temperature area battery application mechanism, performance, and strategies.
    Chen S; Wei X; Zhang G; Wang X; Zhu J; Feng X; Dai H; Ouyang M
    Innovation (Camb); 2023 Jul; 4(4):100465. PubMed ID: 37448741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive review on isolated and non-isolated converter configuration and fast charging technology: For battery and plug in hybrid electric vehicle.
    Annamalai MC; Amutha Prabha N
    Heliyon; 2023 Aug; 9(8):e18808. PubMed ID: 37636357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-Zero-Energy Smart Battery Thermal Management Enabled by Sorption Energy Harvesting from Air.
    Xu J; Chao J; Li T; Yan T; Wu S; Wu M; Zhao B; Wang R
    ACS Cent Sci; 2020 Sep; 6(9):1542-1554. PubMed ID: 32999929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Thermoelectric-Heat-Pump Employed Active Control Strategy for the Dynamic Cooling Ability Distribution of Liquid Cooling System for the Space Station's Main Power-Cell-Arrays.
    Xu HJ; Wang JX; Li YZ; Bi YJ; Gao LJ
    Entropy (Basel); 2019 Jun; 21(6):. PubMed ID: 33267292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity Analysis of the Battery Thermal Management System with a Reciprocating Cooling Strategy Combined with a Flat Heat Pipe.
    Wei T; Xiaoming X; Hua D; Yaohua G; Jicheng L; Hongchao W
    ACS Omega; 2020 Apr; 5(14):8258-8267. PubMed ID: 32309736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study the charging process of moving quantum batteries inside cavity.
    Hadipour M; Haseli S; Dolatkhah H; Rashidi M
    Sci Rep; 2023 Jul; 13(1):10672. PubMed ID: 37393354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast-Charging Strategies for Lithium-Ion Batteries: Advances and Perspectives.
    Zhao J; Song C; Li G
    Chempluschem; 2022 Jul; 87(7):e202200155. PubMed ID: 35852174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast charging of lithium-ion batteries at all temperatures.
    Yang XG; Zhang G; Ge S; Wang CY
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7266-7271. PubMed ID: 29941558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery.
    Liu J; Wang Z; Gong J; Liu K; Wang H; Guo L
    Materials (Basel); 2017 Feb; 10(3):. PubMed ID: 28772588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fast-Charging and High-Temperature All-Organic Rechargeable Potassium Battery.
    Qin K; Holguin K; Huang J; Mohammadiroudbari M; Chen F; Yang Z; Xu GL; Luo C
    Adv Sci (Weinh); 2022 Dec; 9(34):e2106116. PubMed ID: 36316243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal Runaway Triggered by Plated Lithium on the Anode after Fast Charging.
    Li Y; Feng X; Ren D; Ouyang M; Lu L; Han X
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46839-46850. PubMed ID: 31742989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.