These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 3747462)
1. Viscoelastic properties of microvessels in rat spinotrapezius muscle. Skalak TC; Schmid-Schönbein GW J Biomech Eng; 1986 Aug; 108(3):193-200. PubMed ID: 3747462 [TBL] [Abstract][Full Text] [Related]
2. A theory of blood flow in skeletal muscle. Schmid-Schönbein GW J Biomech Eng; 1988 Feb; 110(1):20-6. PubMed ID: 3347020 [TBL] [Abstract][Full Text] [Related]
3. Dynamic viscous flow in distensible vessels of skeletal muscle microcirculation: application to pressure and flow transients. Schmid-Schönbein GW; Lee SY; Sutton D Biorheology; 1989; 26(2):215-27. PubMed ID: 2605329 [TBL] [Abstract][Full Text] [Related]
4. Wave transmission and input impedance of a model of skeletal muscle microvasculature. Frasch HF; Kresh JY; Noordergraaf A Ann Biomed Eng; 1994; 22(1):45-57. PubMed ID: 8060026 [TBL] [Abstract][Full Text] [Related]
5. The microvasculature in skeletal muscle. I. Arteriolar network in rat spinotrapezius muscle. Engelson ET; Skalak TC; Schmid-Schönbein GW Microvasc Res; 1985 Jul; 30(1):29-44. PubMed ID: 4021836 [TBL] [Abstract][Full Text] [Related]
6. Fluid exchange in skeletal muscle with viscoelastic blood vessels. Lee J; Salathé EP; Schmid-Schönbein GW Am J Physiol; 1987 Dec; 253(6 Pt 2):H1548-56. PubMed ID: 3425754 [TBL] [Abstract][Full Text] [Related]
7. Direct observations of muscle arterioles and venules following contraction of skeletal muscle fibres in the rat. Marshall JM; Tandon HC J Physiol; 1984 May; 350():447-59. PubMed ID: 6747856 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical model for the myogenic response in the microcirculation: Part II--Experimental evaluation in rat cremaster muscle. Lee S; Schmid-Schönbein GW J Biomech Eng; 1996 May; 118(2):152-7. PubMed ID: 8738778 [TBL] [Abstract][Full Text] [Related]
9. Responses observed in individual arterioles and venules of rat skeletal muscle during systemic hypoxia. Mian R; Marshall JM J Physiol; 1991 May; 436():485-97. PubMed ID: 2061843 [TBL] [Abstract][Full Text] [Related]
10. Direct observations of the effects of baroreceptor stimulation on skeletal muscle circulation of the rat. Hébert MT; Marshall JM J Physiol; 1988 Jun; 400():45-59. PubMed ID: 3418535 [TBL] [Abstract][Full Text] [Related]
11. A mathematical description of the myogenic response in the microcirculation. Borgström P; Grände PO; Mellander S Acta Physiol Scand; 1982 Dec; 116(4):363-76. PubMed ID: 7170999 [TBL] [Abstract][Full Text] [Related]
12. Diameter and blood flow of skeletal muscle venules during local flow regulation. House SD; Johnson PC Am J Physiol; 1986 May; 250(5 Pt 2):H828-37. PubMed ID: 3706555 [TBL] [Abstract][Full Text] [Related]
13. The influence of the sympathetic nervous system on individual vessels of the microcirculation of skeletal muscle of the rat. Marshall JM J Physiol; 1982 Nov; 332():169-86. PubMed ID: 7153926 [TBL] [Abstract][Full Text] [Related]
14. The microvasculature in skeletal muscle. III. Venous network anatomy in normotensive and spontaneously hypertensive rats. Engelson ET; Schmid-Schönbein GW; Zweifach BW Int J Microcirc Clin Exp; 1985; 4(3):229-48. PubMed ID: 4066180 [TBL] [Abstract][Full Text] [Related]
15. The pressure-flow relation for plasma in whole organ skeletal muscle and its experimental verification. Sutton DW; Schmid-Schönbein GW J Biomech Eng; 1991 Nov; 113(4):452-7. PubMed ID: 1762443 [TBL] [Abstract][Full Text] [Related]
16. The role of adenosine in dilator responses induced in arterioles and venules of rat skeletal muscle by systemic hypoxia. Mian R; Marshall JM J Physiol; 1991 Nov; 443():499-511. PubMed ID: 1822535 [TBL] [Abstract][Full Text] [Related]
17. The roles of catecholamines in responses evoked in arterioles and venules of rat skeletal muscle by systemic hypoxia. Mian R; Marshall JM J Physiol; 1991 May; 436():499-510. PubMed ID: 2061844 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow. Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896 [TBL] [Abstract][Full Text] [Related]
19. Wall structure of arteries and arterioles feeding the spinotrapezius muscle of normotensive and spontaneously hypertensive rats. Schmid-Schönbein GW; Delano FA; Chu S; Zweifach BW Int J Microcirc Clin Exp; 1990 Feb; 9(1):47-66. PubMed ID: 2323897 [TBL] [Abstract][Full Text] [Related]
20. Microvascular changes associated with high salt intake and hypertension in Dahl rats. Boegehold MA Int J Microcirc Clin Exp; 1993 Apr; 12(2):143-56. PubMed ID: 8500974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]