BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 37474872)

  • 1. Dual-amplification system based on CRISPR-Cas12a and horseradish peroxidase-tethered magnetic microspheres for colorimetric detection of microcystin-LR.
    Wu P; Zhang M; Xue X; Ding P; Ye L
    Mikrochim Acta; 2023 Jul; 190(8):314. PubMed ID: 37474872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas12a-Based Aptasensor for On-Site and Highly Sensitive Detection of Microcystin-LR in Freshwater.
    Kang Y; Su G; Yu Y; Cao J; Wang J; Yan B
    Environ Sci Technol; 2022 Apr; 56(7):4101-4110. PubMed ID: 35263090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A colorimetric, photothermal, and fluorescent triple-mode CRISPR/cas biosensor for drug-resistance bacteria detection.
    Zheng L; Jiang Y; Huang F; Wu Q; Lou Y
    J Nanobiotechnology; 2023 Dec; 21(1):493. PubMed ID: 38115051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CeO
    Wang G; Guo J; Zou J; Lei Z
    Anal Chim Acta; 2024 Jun; 1306():342599. PubMed ID: 38692792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aptamer-based colorimetric detection of methicillin-resistant Staphylococcus aureus by using a CRISPR/Cas12a system and recombinase polymerase amplification.
    Wei L; Wang Z; Wang J; Wang X; Chen Y
    Anal Chim Acta; 2022 Oct; 1230():340357. PubMed ID: 36192057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas12a-mediated dual-enzyme cascade amplification for sensitive colorimetric detection of HPV-16 target and ATP.
    Gong S; Song K; Zhang S; Zhou P; Pan W; Li N; Tang B
    Talanta; 2024 Jan; 266(Pt 2):125050. PubMed ID: 37598442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of SARS-CoV-2 receptor binding domain using fluorescence probe and DNA flowers enabled by rolling circle amplification.
    Zhang M; Ye L
    Mikrochim Acta; 2023 Mar; 190(4):163. PubMed ID: 36988717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AND Logic-Gate-Based CRISPR/Cas12a Biosensing Platform for the Sensitive Colorimetric Detection of Dual miRNAs.
    Gong S; Wang X; Zhou P; Pan W; Li N; Tang B
    Anal Chem; 2022 Nov; 94(45):15839-15846. PubMed ID: 36318504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled bifunctional nanoflower-enabled CRISPR/Cas biosensing platform for dual-readout detection of Salmonella enterica.
    Qiu M; Yuan Z; Li N; Yang X; Zhang X; Jiang Y; Zhao Q; Man C
    J Hazard Mater; 2024 Jun; 471():134323. PubMed ID: 38640680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas12a-Assisted Chemiluminescence Sensor for Aflatoxin B
    Wang Z; Wei L; Ruan S; Chen Y
    J Agric Food Chem; 2023 Mar; 71(10):4417-4425. PubMed ID: 36853759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual and colorimetric detection of microRNA in clinical samples based on strand displacement amplification and nanozyme-mediated CRISPR-Cas12a system.
    Luo B; Zhou J; Zhan X; Ying B; Lan F; Wu Y
    Talanta; 2024 May; 277():126310. PubMed ID: 38815319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horseradish peroxidase-encapsulated DNA nanoflowers: An innovative signal-generation tag for colorimetric biosensor.
    Zeng R; Wang J; Wang Q; Tang D; Lin Y
    Talanta; 2021 Jan; 221():121600. PubMed ID: 33076131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse Transcription Recombinase Polymerase Amplification Coupled with CRISPR-Cas12a for Facile and Highly Sensitive Colorimetric SARS-CoV-2 Detection.
    Zhang WS; Pan J; Li F; Zhu M; Xu M; Zhu H; Yu Y; Su G
    Anal Chem; 2021 Mar; 93(8):4126-4133. PubMed ID: 33570401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A colorimetric tandem combination of CRISPR/Cas12a with dual functional hybridization chain reaction for ultra-sensitive detection of
    Liu Q; Yang M; Zhang H; Ma W; Fu X; Li H; Gao S
    Anal Methods; 2024 May; 16(20):3220-3230. PubMed ID: 38717230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin.
    Du Y; Zhou Y; Wen Y; Bian X; Xie Y; Zhang W; Liu G; Yan J
    Mikrochim Acta; 2019 Nov; 186(12):840. PubMed ID: 31768650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA controllable peroxidase-like activity of Ti
    Guo J; Wang G; Zou J; Lei Z
    Anal Bioanal Chem; 2023 Jul; 415(17):3559-3569. PubMed ID: 37198360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu/Au/Pt trimetallic nanoparticles coated with DNA hydrogel as target-responsive and signal-amplification material for sensitive detection of microcystin-LR.
    Wu P; Li S; Ye X; Ning B; Bai J; Peng Y; Li L; Han T; Zhou H; Gao Z; Ding P
    Anal Chim Acta; 2020 Oct; 1134():96-105. PubMed ID: 33059870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas12a-based colorimetric aptasensor for aflatoxin M1 detection based on oxidase-mimicking activity of flower-like MnO
    Esmaelpourfarkhani M; Ramezani M; Alibolandi M; Abnous K; Taghdisi SM
    Talanta; 2024 May; 271():125729. PubMed ID: 38306811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Ultrasensitive Colorimetric Foodborne Pathogenic Detection Method Using a CRISPR/Cas12a Mediated Strand Displacement/Hybridization Chain Reaction.
    Jiang Y; Zheng C; Jin M; Zhou R; Wu Q; Huang F; Lou Y; Zheng L
    J Agric Food Chem; 2023 Mar; 71(9):4193-4200. PubMed ID: 36812357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strand Displacement Amplification Assisted CRISPR-Cas12a Strategy for Colorimetric Analysis of Viral Nucleic Acid.
    Gong S; Zhang S; Wang X; Li J; Pan W; Li N; Tang B
    Anal Chem; 2021 Nov; 93(45):15216-15223. PubMed ID: 34736322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.