These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 37474911)
1. Long-read, chromosome-scale assembly of Vitis rotundifolia cv. Carlos and its unique resistance to Xylella fastidiosa subsp. fastidiosa. Huff M; Hulse-Kemp AM; Scheffler BE; Youngblood RC; Simpson SA; Babiker E; Staton M BMC Genomics; 2023 Jul; 24(1):409. PubMed ID: 37474911 [TBL] [Abstract][Full Text] [Related]
2. Proteomics approach to identify unique xylem sap proteins in Pierce's disease-tolerant Vitis species. Basha SM; Mazhar H; Vasanthaiah HK Appl Biochem Biotechnol; 2010 Mar; 160(3):932-44. PubMed ID: 19412582 [TBL] [Abstract][Full Text] [Related]
3. Virulence Comparison of a Comprehensive Panel of Burbank L; Gomez L; Shantharaj D; Abdelsamad N; Vasquez K; Burhans A; Ortega B; Rodriguez SH; Strickland J; Krugner R; De La Fuente L; Naegele R Plant Dis; 2024 Jun; 108(6):1555-1564. PubMed ID: 38105458 [No Abstract] [Full Text] [Related]
4. Population genomic analysis of a bacterial plant pathogen: novel insight into the origin of Pierce's disease of grapevine in the U.S. Nunney L; Yuan X; Bromley R; Hartung J; Montero-Astúa M; Moreira L; Ortiz B; Stouthamer R PLoS One; 2010 Nov; 5(11):e15488. PubMed ID: 21103383 [TBL] [Abstract][Full Text] [Related]
5. Proteome Biomarkers in Xylem Reveal Pierce's Disease Tolerance in Grape. Katam R; Chibanguza K; Latinwo LM; Smith D J Proteomics Bioinform; 2015; 8(9):217-224. PubMed ID: 27019567 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the Xylella fastidiosa PD1311 gene mutant and its suppression of Pierce's disease on grapevines. Hao L; Johnson K; Cursino L; Mowery P; Burr TJ Mol Plant Pathol; 2017 Jun; 18(5):684-694. PubMed ID: 27388152 [TBL] [Abstract][Full Text] [Related]
7. Grape Cultivar and Sap Culture Conditions Affect the Development of Xylella fastidiosa Phenotypes Associated with Pierce's Disease. Hao L; Zaini PA; Hoch HC; Burr TJ; Mowery P PLoS One; 2016; 11(8):e0160978. PubMed ID: 27508296 [TBL] [Abstract][Full Text] [Related]
8. Genetic analysis reveals an east-west divide within North American Vitis species that mirrors their resistance to Pierce's disease. Riaz S; Tenscher AC; Heinitz CC; Huerta-Acosta KG; Walker MA PLoS One; 2020; 15(12):e0243445. PubMed ID: 33338052 [TBL] [Abstract][Full Text] [Related]
9. Biological Control of Pierce's Disease of Grape by an Endophytic Bacterium. Baccari C; Antonova E; Lindow S Phytopathology; 2019 Feb; 109(2):248-256. PubMed ID: 30540526 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the process of movement of Xylella fastidiosa within susceptible and resistant grape cultivars. Baccari C; Lindow SE Phytopathology; 2011 Jan; 101(1):77-84. PubMed ID: 20822432 [TBL] [Abstract][Full Text] [Related]
11. Water deficit modulates the response of Vitis vinifera to the Pierce's disease pathogen Xylella fastidiosa. Choi HK; Iandolino A; da Silva FG; Cook DR Mol Plant Microbe Interact; 2013 Jun; 26(6):643-57. PubMed ID: 23425100 [TBL] [Abstract][Full Text] [Related]
12. Draft Genome Resources of Two Strains of Xylella fastidiosa XYL1732/17 and XYL2055/17 Isolated from Mallorca Vineyards. Gomila M; Moralejo E; Busquets A; Segui G; Olmo D; Nieto A; Juan A; Lalucat J Phytopathology; 2019 Feb; 109(2):222-224. PubMed ID: 30570447 [TBL] [Abstract][Full Text] [Related]
13. Allopatric Plant Pathogen Population Divergence following Disease Emergence. Castillo AI; Bojanini I; Chen H; Kandel PP; De La Fuente L; Almeida RPP Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33483307 [TBL] [Abstract][Full Text] [Related]
14. First Report of Pierce's Disease of Grape Caused by Xylella fastidiosa in Oklahoma. Smith DL; Dominiak-Olson J; Sharber CD Plant Dis; 2009 Jul; 93(7):762. PubMed ID: 30764372 [TBL] [Abstract][Full Text] [Related]
15. Diagnosis of Pierce's disease using biomarkers specific to Xylella fastidiosa rRNA and Vitis vinifera gene expression. Choi HK; Goes da Silva F; Lim HJ; Iandolino A; Seo YS; Lee SW; Cook DR Phytopathology; 2010 Oct; 100(10):1089-99. PubMed ID: 20839944 [TBL] [Abstract][Full Text] [Related]
16. Xylella fastidiosa: an examination of a re-emerging plant pathogen. Rapicavoli J; Ingel B; Blanco-Ulate B; Cantu D; Roper C Mol Plant Pathol; 2018 Apr; 19(4):786-800. PubMed ID: 28742234 [TBL] [Abstract][Full Text] [Related]
17. Diploid chromosome-scale assembly of the Muscadinia rotundifolia genome supports chromosome fusion and disease resistance gene expansion during Vitis and Muscadinia divergence. Cochetel N; Minio A; Massonnet M; Vondras AM; Figueroa-Balderas R; Cantu D G3 (Bethesda); 2021 Apr; 11(4):. PubMed ID: 33824960 [TBL] [Abstract][Full Text] [Related]
18. Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of Pierce's disease. Lindow S; Newman K; Chatterjee S; Baccari C; Lavarone AT; Ionescu M Mol Plant Microbe Interact; 2014 Mar; 27(3):244-54. PubMed ID: 24499029 [TBL] [Abstract][Full Text] [Related]
19. Comparative analysis of ESTs involved in grape responses to Xylella fastidiosa infection. Lin H; Doddapaneni H; Takahashi Y; Walker MA BMC Plant Biol; 2007 Feb; 7():8. PubMed ID: 17316447 [TBL] [Abstract][Full Text] [Related]
20. Resistance to Elsinoë ampelina and expression of related resistant genes in Vitis rotundifolia Michx. grapes. Louime C; Lu J; Onokpise O; Vasanthaiah HK; Kambiranda D; Basha SM; Yun HK Int J Mol Sci; 2011; 12(6):3473-88. PubMed ID: 21747689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]