BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37475047)

  • 1. Subtractionless compressed-sensing-accelerated whole-body MR angiography using two-point Dixon fat suppression with single-pass half-reduced contrast dose: feasibility study and initial experience.
    Fu Q; Lei ZQ; Li JY; Wu JW; Liu XM; Fan WL; Sun P; Wang JZ; Liu DX; Yang F; Zheng CS; Kong XC
    J Cardiovasc Magn Reson; 2023 Jul; 25(1):41. PubMed ID: 37475047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subtractionless first-pass single contrast medium dose peripheral MR angiography using two-point Dixon fat suppression.
    Leiner T; Habets J; Versluis B; Geerts L; Alberts E; Blanken N; Hendrikse J; Vonken EJ; Eggers H
    Eur Radiol; 2013 Aug; 23(8):2228-35. PubMed ID: 23591617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility and Robustness of 3T Magnetic Resonance Angiography Using Modified Dixon Fat Suppression in Patients With Known or Suspected Peripheral Artery Disease.
    Weiss KJ; Eggers H; Stehning C; Kouwenhoven M; Nassar M; Pieske B; Stawowy P; Schnackenburg B; Kelle S
    Front Cardiovasc Med; 2020; 7():549392. PubMed ID: 33195449
    [No Abstract]   [Full Text] [Related]  

  • 4. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno-occlusive disease: a comparative study with digital subtraction angiography.
    Zhang X; Cao YZ; Mu XH; Sun Y; Schmidt M; Forman C; Speier P; Lu SS; Hong XN
    Eur Radiol; 2020 Jun; 30(6):3059-3065. PubMed ID: 32064562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing.
    Lin Z; Zhang X; Guo L; Wang K; Jiang Y; Hu X; Huang Y; Wei J; Ma S; Liu Y; Zhu L; Zhuo Z; Liu J; Wang X
    J Magn Reson Imaging; 2019 Dec; 50(6):1843-1851. PubMed ID: 30980468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast Intracranial Vessel Imaging With Non-Cartesian Spiral 3-Dimensional Time-of-Flight Magnetic Resonance Angiography at 1.5 T: An In Vitro and Clinical Study in Healthy Volunteers.
    Sartoretti T; van Smoorenburg L; Sartoretti E; Schwenk Á; Binkert CA; Kulcsár Z; Becker AS; Graf N; Wyss M; Sartoretti-Schefer S
    Invest Radiol; 2020 May; 55(5):293-303. PubMed ID: 31895223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-contrast compressed sensing whole-heart coronary magnetic resonance angiography at 3T: A comparison with conventional imaging.
    Nakamura M; Kido T; Kido T; Watanabe K; Schmidt M; Forman C; Mochizuki T
    Eur J Radiol; 2018 Jul; 104():43-48. PubMed ID: 29857865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unenhanced Whole-Heart Coronary MRA: Prospective Intraindividual Comparison of 1.5-T SSFP and 3-T Dixon Water-Fat Separation GRE Methods Using Coronary Angiography as Reference.
    Tian D; Zhao SH; Wang Y; Lu HF; Chen YY; Guo JJ; Ma JY; Chen ZW; Zeng MS; Jin H
    AJR Am J Roentgenol; 2022 Aug; 219(2):199-211. PubMed ID: 35293232
    [No Abstract]   [Full Text] [Related]  

  • 9. Supraaortic arteries: contrast material dose reduction at 3.0-T high-spatial-resolution MR angiography--feasibility study.
    Tomasian A; Salamon N; Lohan DG; Jalili M; Villablanca JP; Finn JP
    Radiology; 2008 Dec; 249(3):980-90. PubMed ID: 19011192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3.0 T unenhanced Dixon water-fat separation whole-heart coronary magnetic resonance angiography: compressed-sensing sensitivity encoding imaging versus conventional 2D sensitivity encoding imaging.
    Tian D; Sun Y; Guo JJ; Zhao SH; Lu HF; Chen YY; Ge MY; Zeng MS; Jin H
    Int J Cardiovasc Imaging; 2023 Sep; 39(9):1775-1784. PubMed ID: 37428247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Non-contrast-enhanced Dixon Water-fat Separation Compressed Sensing Whole-heart Coronary MR Angiography at 3.0 T: A Single-center Experience.
    Lu H; Guo J; Zhao S; Yang S; Ma J; Ge M; Chen Y; Zeng M; Jin H
    Acad Radiol; 2022 Apr; 29 Suppl 4():S82-S90. PubMed ID: 34127363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-breathing high resolution modified Dixon steady-state angiography with compressed sensing for the assessment of the thoracic vasculature in pediatric patients with congenital heart disease.
    Mesropyan N; Isaak A; Dabir D; Hart C; Faron A; Endler C; Kravchenko D; Katemann C; Pieper CC; Kuetting D; Attenberger UI; Luetkens JA
    J Cardiovasc Magn Reson; 2021 Oct; 23(1):117. PubMed ID: 34689811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of accelerated non-contrast-enhanced whole-heart bSSFP coronary MR angiography by deep learning-constrained compressed sensing.
    Wu X; Tang L; Li W; He S; Yue X; Peng P; Wu T; Zhang X; Wu Z; He Y; Chen Y; Huang J; Sun J
    Eur Radiol; 2023 Nov; 33(11):8180-8190. PubMed ID: 37209126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dixon-based fat-free MR-angiography compared to first pass and steady-state high-resolution MR-angiography using a blood pool contrast agent.
    Homsi R; Gieseke J; Kukuk GM; Träber F; Willinek WA; Schild HH; Hadizadeh DR
    Magn Reson Imaging; 2015 Nov; 33(9):1035-1042. PubMed ID: 26220860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of contrast-enhanced coronary artery magnetic resonance angiography using compressed sensing.
    Hirai K; Kido T; Kido T; Ogawa R; Tanabe Y; Nakamura M; Kawaguchi N; Kurata A; Watanabe K; Yamaguchi O; Schmidt M; Forman C; Mochizuki T
    J Cardiovasc Magn Reson; 2020 Feb; 22(1):15. PubMed ID: 32050982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Application of Non-Contrast-Enhanced Dixon Water-Fat Separation Compressed SENSE Whole-Heart Coronary MR Angiography at 3.0 T With and Without Nitroglycerin.
    Lu H; Zhao S; Tian D; Yang S; Ma J; Chen Y; Ge M; Zeng M; Jin H
    J Magn Reson Imaging; 2022 Feb; 55(2):579-591. PubMed ID: 34254384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High spatial and temporal resolution dynamic contrast-enhanced magnetic resonance angiography using compressed sensing with magnitude image subtraction.
    Rapacchi S; Han F; Natsuaki Y; Kroeker R; Plotnik A; Lehrman E; Sayre J; Laub G; Finn JP; Hu P
    Magn Reson Med; 2014 May; 71(5):1771-83. PubMed ID: 23801456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-body MR angiography in patients with peripheral arterial disease.
    Nielsen YJ
    Dan Med Bull; 2010 Dec; 57(12):B4231. PubMed ID: 21122468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Contrast Agent Dose Reduction on Vascular Enhancement and Image Quality in Thoracoabdominal Dynamic 3-Dimensional Magnetic Resonance Angiography: A Systematic Intraindividual Analysis in Pigs.
    Endler CH; Jost G; Pietsch H; Luetkens JA; Keil VC; Willinek WA; Attenberger UI; Hadizadeh DR
    Invest Radiol; 2022 Oct; 57(10):689-695. PubMed ID: 35510876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Liver Magnetic Resonance Imaging in Free-Breathing: Feasibility of a Cartesian T1-Weighted Acquisition Technique With Compressed Sensing and Additional Self-Navigation Signal for Hard-Gated and Motion-Resolved Reconstruction.
    Kaltenbach B; Bucher AM; Wichmann JL; Nickel D; Polkowski C; Hammerstingl R; Vogl TJ; Bodelle B
    Invest Radiol; 2017 Nov; 52(11):708-714. PubMed ID: 28622249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.