BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 37475159)

  • 1. Novel Latent Heat Storage Systems Based on Liquid Metal Matrices with Suspended Phase Change Material Microparticles.
    Kang S; Kim W; Song C; Hong Y; Kim S; Goh M; Chung SK; Lee J
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36781-36791. PubMed ID: 37475159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compatibility of Phase Change Materials and Metals: Experimental Evaluation Based on the Corrosion Rate.
    Ostrý M; Bantová S; Struhala K
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32570927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of Composite Phase Change Materials Based on Porous Silica Nanomaterials for Latent Heat Storage Applications.
    Mitran RA; Ioniţǎ S; Lincu D; Berger D; Matei C
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33466451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper Sulfide Nanodisk-Doped Solid-Solid Phase Change Materials for Full Spectrum Solar-Thermal Energy Harvesting and Storage.
    Xiong F; Yuan K; Aftab W; Jiang H; Shi J; Liang Z; Gao S; Zhong R; Wang H; Zou R
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1377-1385. PubMed ID: 33351579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and application of composite phase change materials stabilized by cellulose nanofibril-based foams for thermal energy storage.
    Shen Z; Kwon S; Lee HL; Toivakka M; Oh K
    Int J Biol Macromol; 2022 Dec; 222(Pt B):3001-3013. PubMed ID: 36244531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance enhancement of a thermal energy storage system using shape-stabilized LDPE/hexadecane/SEBS composite PCMs by copper oxide addition.
    Trigui A; Abdelmouleh M; Boudaya C
    RSC Adv; 2022 Aug; 12(34):21990-22003. PubMed ID: 36043091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Conductivity Measurement of Flexible Composite Phase-Change Materials Based on the Steady-State Method.
    Feng Z; Xiao X
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Healable supramolecular micelle/nano-encapsulated metal composite phase change material for thermal energy storage.
    Muhabie AA
    RSC Adv; 2023 Sep; 13(39):27624-27633. PubMed ID: 37720835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Thermal-Conductivity and High-Fluidity Heat Transfer Emulsion with 89 wt % Suspended Liquid Metal Microdroplets.
    Kim S; Kang S; Lee J
    ACS Omega; 2023 May; 8(20):17748-17757. PubMed ID: 37251162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-Change Materials in Hydronic Heating and Cooling Systems: A Literature Review.
    Koželj R; Osterman E; Leonforte F; Del Pero C; Miglioli A; Zavrl E; Stropnik R; Aste N; Stritih U
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and thermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stem biochar microparticles.
    Xiong T; Ok YS; Dissanayake PD; Tsang DCW; Kim S; Kua HW; Shah KW
    Sci Total Environ; 2022 Jun; 827():154341. PubMed ID: 35257765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Energy Storage Using a Hybrid Composite Based on Technical-Grade Paraffin-AP25 Wax as a Phase Change Material.
    Nabwey HA; Tony MA
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filler dimensionality effect on the performance of paraffin-based phase change materials.
    Ohayon-Lavi A; Ziskind G; Regev O
    J Colloid Interface Sci; 2022 Dec; 627():587-595. PubMed ID: 35872416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Scalable Fabrication of Liquid Metal and Nano-Sheet Graphene Hybrid Phase Change Materials for Thermal Management.
    Wang JX; Lai H; Zhong M; Liu X; Chen Y; Yao S
    Small Methods; 2023 Sep; 7(9):e2300139. PubMed ID: 37129546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal energy storage and thermal conductivity properties of fatty acid/fatty acid-grafted-CNTs and fatty acid/CNTs as novel composite phase change materials.
    Al-Ahmed A; Sarı A; Mazumder MAJ; Salhi B; Hekimoğlu G; Al-Sulaiman FA; Inamuddin
    Sci Rep; 2020 Sep; 10(1):15388. PubMed ID: 32958838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrothermal Phase Change Composite with Flexibility over a Wide Temperature Range for Wearable Thermotherapy.
    Chen L; Luo L; Mao Z; Wang B; Feng X; Sui X
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):4089-4098. PubMed ID: 38268145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural Microtubule-Encapsulated Phase-Change Material with Simultaneously High Latent Heat Capacity and Enhanced Thermal Conductivity.
    Song S; Zhao T; Zhu W; Qiu F; Wang Y; Dong L
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20828-20837. PubMed ID: 31117448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dielectrophoretic Alignment of Biphasic Metal Fillers for Thermal Interface Materials.
    Lee Y; Akyildiz K; Kang C; So JH; Koo HJ
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triglycerides as Novel Phase-Change Materials: A Review and Assessment of Their Thermal Properties.
    Ravotti R; Worlitschek J; Pulham CR; Stamatiou A
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33260969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal energy storage and thermal conductivity properties of Octadecanol-MWCNT composite PCMs as promising organic heat storage materials.
    Al-Ahmed A; Sarı A; Mazumder MAJ; Hekimoğlu G; Al-Sulaiman FA; Inamuddin
    Sci Rep; 2020 Jun; 10(1):9168. PubMed ID: 32513930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.