These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37475166)

  • 1. Quantifying uncertainty in inferences of landscape genetic resistance due to choice of individual-based genetic distance metric.
    Beninde J; Wittische J; Frantz AC
    Mol Ecol Resour; 2024 Jan; 24(1):e13831. PubMed ID: 37475166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the R package 'resistancega': A promising approach towards the accurate optimization of landscape resistance surfaces.
    Winiarski KJ; Peterman WE; McGarigal K
    Mol Ecol Resour; 2020 Nov; 20(6):1583-1596. PubMed ID: 32608130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One metric or many? Refining the analytical framework of landscape resistance estimation in individual-based landscape genetic analyses.
    Peterman WE
    Mol Ecol Resour; 2024 Jan; 24(1):e13876. PubMed ID: 37819681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between least-cost and resistance distance.
    Marrotte RR; Bowman J
    PLoS One; 2017; 12(3):e0174212. PubMed ID: 28350863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of regression methods for model selection in individual-based landscape genetic analysis.
    Shirk AJ; Landguth EL; Cushman SA
    Mol Ecol Resour; 2018 Jan; 18(1):55-67. PubMed ID: 28796434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of individual-based genetic distance metrics for landscape genetics.
    Shirk AJ; Landguth EL; Cushman SA
    Mol Ecol Resour; 2017 Nov; 17(6):1308-1317. PubMed ID: 28449317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the lag time to detect barriers in landscape genetics.
    Landguth EL; Cushman SA; Schwartz MK; McKelvey KS; Murphy M; Luikart G
    Mol Ecol; 2010 Oct; 19(19):4179-91. PubMed ID: 20819159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying past and present connectivity illuminates a rapidly changing landscape for the African elephant.
    Epps CW; Wasser SK; Keim JL; Mutayoba BM; Brashares JS
    Mol Ecol; 2013 Mar; 22(6):1574-88. PubMed ID: 23398457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spurious correlations and inference in landscape genetics.
    Cushman SA; Landguth EL
    Mol Ecol; 2010 Sep; 19(17):3592-602. PubMed ID: 20618896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis.
    Spear SF; Balkenhol N; Fortin MJ; McRae BH; Scribner K
    Mol Ecol; 2010 Sep; 19(17):3576-91. PubMed ID: 20723064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysing landscape effects on dispersal networks and gene flow with genetic graphs.
    Savary P; Foltête JC; Moal H; Vuidel G; Garnier S
    Mol Ecol Resour; 2021 May; 21(4):1167-1185. PubMed ID: 33460526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of landscape on gene flow in the eastern massasauga rattlesnake (Sistrurus c. catenatus): insight from computer simulations.
    Dileo MF; Rouse JD; Dávila JA; Lougheed SC
    Mol Ecol; 2013 Sep; 22(17):4483-98. PubMed ID: 23889682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corridor-based approach with spatial cross-validation reveals scale-dependent effects of geographic distance, human footprint and canopy cover on grizzly bear genetic connectivity.
    Palm EC; Landguth EL; Holden ZA; Day CC; Lamb CT; Frame PF; Morehouse AT; Mowat G; Proctor MF; Sawaya MA; Stenhouse G; Whittington J; Zeller KA
    Mol Ecol; 2023 Oct; 32(19):5211-5227. PubMed ID: 37602946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expert-based versus habitat-suitability models to develop resistance surfaces in landscape genetics.
    Milanesi P; Holderegger R; Caniglia R; Fabbri E; Galaverni M; Randi E
    Oecologia; 2017 Jan; 183(1):67-79. PubMed ID: 27730367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative landscape genetics of two pond-breeding amphibian species in a highly modified agricultural landscape.
    Goldberg CS; Waits LP
    Mol Ecol; 2010 Sep; 19(17):3650-63. PubMed ID: 20723062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative landscape genetics of three closely related sympatric Hesperid butterflies with diverging ecological traits.
    Engler JO; Balkenhol N; Filz KJ; Habel JC; Rödder D
    PLoS One; 2014; 9(9):e106526. PubMed ID: 25184414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility of computer simulations in landscape genetics.
    Epperson BK; McRae BH; Scribner K; Cushman SA; Rosenberg MS; Fortin MJ; James PM; Murphy M; Manel S; Legendre P; Dale MR
    Mol Ecol; 2010 Sep; 19(17):3549-64. PubMed ID: 20618894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring landscape resistance to gene flow when genetic drift is spatially heterogeneous.
    Savary P; Foltête JC; Moal H; Vuidel G; Garnier S
    Mol Ecol Resour; 2023 Oct; 23(7):1574-1588. PubMed ID: 37332161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topology of population networks.
    Dyer RJ; Nason JD; Garrick RC
    Mol Ecol; 2010 Sep; 19(17):3746-59. PubMed ID: 20723052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Landscape genetics of a pollinator longhorn beetle [Typocerus v. velutinus (Olivier)] on a continuous habitat surface.
    Abdel Moniem HE; Schemerhorn BJ; DeWoody JA; Holland JD
    Mol Ecol; 2016 Oct; 25(20):5015-5028. PubMed ID: 27552358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.