These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 37475213)

  • 21. Shifting the optimal stiffness for cell migration.
    Bangasser BL; Shamsan GA; Chan CE; Opoku KN; Tüzel E; Schlichtmann BW; Kasim JA; Fuller BJ; McCullough BR; Rosenfeld SS; Odde DJ
    Nat Commun; 2017 May; 8():15313. PubMed ID: 28530245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fmn2 Regulates Growth Cone Motility by Mediating a Molecular Clutch to Generate Traction Forces.
    Ghate K; Mutalik SP; Sthanam LK; Sen S; Ghose A
    Neuroscience; 2020 Nov; 448():160-171. PubMed ID: 33002558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling distributed forces within cell adhesions of varying size on continuous substrates.
    Hou JC; Shamsan GA; Anderson SM; McMahon MM; Tyler LP; Castle BT; Heussner RK; Provenzano PP; Keefe DF; Barocas VH; Odde DJ
    Cytoskeleton (Hoboken); 2019 Nov; 76(11-12):571-585. PubMed ID: 31512404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interrogating the Molecular Clutch in Neuronal Growth Cones: Measuring Traction Forces, F-actin Retrograde Flow, and Point Contact Demographics.
    Ghate K; Mutalik SP; Ghose A
    Methods Mol Biol; 2024; 2831():251-264. PubMed ID: 39134855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glioblastoma Cells Use an Integrin- and CD44-Mediated Motor-Clutch Mode of Migration in Brain Tissue.
    Anderson SM; Kelly M; Odde DJ
    Cell Mol Bioeng; 2024 Apr; 17(2):121-135. PubMed ID: 38737451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superposition of Substrate Deformation Fields Induced by Molecular Clutches Explains Cell Spatial Sensing of Ligands.
    Xue R; Chen Y; Gong Z; Jiang H
    ACS Nano; 2024 Aug; 18(32):21144-21155. PubMed ID: 39088555
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical model of cells probing the myosin-II-independent mechanosensing mechanism.
    Fang Y; Hu Y; Cheng F; Xin Y
    Phys Rev E; 2021 Dec; 104(6-1):064403. PubMed ID: 35030921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The biochemical composition of the actomyosin network sets the magnitude of cellular traction forces.
    Kollimada S; Senger F; Vignaud T; Théry M; Blanchoin L; Kurzawa L
    Mol Biol Cell; 2021 Aug; 32(18):1737-1748. PubMed ID: 34410837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mobility of Molecular Motors Regulates Contractile Behaviors of Actin Networks.
    Matsuda A; Li J; Brumm P; Adachi T; Inoue Y; Kim T
    Biophys J; 2019 Jun; 116(11):2161-2171. PubMed ID: 31103238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A multi-scale clutch model for adhesion complex mechanics.
    Venturini C; Sáez P
    PLoS Comput Biol; 2023 Jul; 19(7):e1011250. PubMed ID: 37450544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite element analysis of traction force microscopy: influence of cell mechanics, adhesion, and morphology.
    Zielinski R; Mihai C; Kniss D; Ghadiali SN
    J Biomech Eng; 2013 Jul; 135(7):71009. PubMed ID: 23720059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic mechanisms of cell rigidity sensing: insights from a computational model of actomyosin networks.
    Borau C; Kim T; Bidone T; García-Aznar JM; Kamm RD
    PLoS One; 2012; 7(11):e49174. PubMed ID: 23139838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Model-based traction force microscopy reveals differential tension in cellular actin bundles.
    Soiné JR; Brand CA; Stricker J; Oakes PW; Gardel ML; Schwarz US
    PLoS Comput Biol; 2015 Mar; 11(3):e1004076. PubMed ID: 25748431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of SMC traction forces in human aortic thoracic aneurysms.
    Petit C; Karkhaneh Yousefi AA; Ben Moussa O; Michel JB; Guignandon A; Avril S
    Biomech Model Mechanobiol; 2021 Apr; 20(2):717-731. PubMed ID: 33449277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Force transmission in migrating cells.
    Fournier MF; Sauser R; Ambrosi D; Meister JJ; Verkhovsky AB
    J Cell Biol; 2010 Jan; 188(2):287-97. PubMed ID: 20100912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determinants of contractile forces generated in disorganized actomyosin bundles.
    Kim T
    Biomech Model Mechanobiol; 2015 Apr; 14(2):345-55. PubMed ID: 25103419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts.
    Azatov M; Goicoechea SM; Otey CA; Upadhyaya A
    Sci Rep; 2016 Jun; 6():28805. PubMed ID: 27353427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate Stiffness and Cell Area Predict Cellular Traction Stresses in Single Cells and Cells in Contact.
    Califano JP; Reinhart-King CA
    Cell Mol Bioeng; 2010 Mar; 3(1):68-75. PubMed ID: 21116436
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vimentin intermediate filaments modulate cell traction force but not cell sensitivity to substrate stiffness.
    Ho Thanh MT; Grella A; Kole D; Ambady S; Wen Q
    Cytoskeleton (Hoboken); 2021 Jun; 78(6):293-302. PubMed ID: 33993652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanoaccumulative Elements of the Mammalian Actin Cytoskeleton.
    Schiffhauer ES; Luo T; Mohan K; Srivastava V; Qian X; Griffis ER; Iglesias PA; Robinson DN
    Curr Biol; 2016 Jun; 26(11):1473-1479. PubMed ID: 27185555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.