These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37475217)

  • 1. 3D target detection and spectral classification for single-photon LiDAR data.
    Belmekki MAA; Leach J; Tobin R; Buller GS; McLaughlin S; Halimi A
    Opt Express; 2023 Jul; 31(15):23729-23745. PubMed ID: 37475217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers.
    Tachella J; Altmann Y; Mellado N; McCarthy A; Tobin R; Buller GS; Tourneret JY; McLaughlin S
    Nat Commun; 2019 Nov; 10(1):4984. PubMed ID: 31676824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust 3D Reconstruction of Dynamic Scenes From Single-Photon Lidar Using Beta-Divergences.
    Legros Q; Tachella J; Tobin R; Mccarthy A; Meignen S; Buller GS; Altmann Y; Mclaughlin S; Davies ME
    IEEE Trans Image Process; 2021; 30():1716-1727. PubMed ID: 33382656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR.
    Ren X; Altmann Y; Tobin R; Mccarthy A; Mclaughlin S; Buller GS
    Opt Express; 2018 Nov; 26(23):30146-30161. PubMed ID: 30469893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of Hyperspectral Single Photon Lidar for Robust Autonomous Vehicle Perception.
    Taher J; Hakala T; Jaakkola A; Hyyti H; Kukko A; Manninen P; Maanpää J; Hyyppä J
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long range 3D imaging through atmospheric obscurants using array-based single-photon LiDAR.
    Jiang PY; Li ZP; Ye WL; Hong Y; Dai C; Huang X; Xi SQ; Lu J; Cui DJ; Cao Y; Xu F; Pan JW
    Opt Express; 2023 May; 31(10):16054-16066. PubMed ID: 37157692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust real-time 3D imaging of moving scenes through atmospheric obscurant using single-photon LiDAR.
    Tobin R; Halimi A; McCarthy A; Soan PJ; Buller GS
    Sci Rep; 2021 May; 11(1):11236. PubMed ID: 34045553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing LiDAR performance using threshold photon-number-resolving detection.
    Wu M; Zhao X; Chen R; Zhang L; He W; Chen Q
    Opt Express; 2024 Jan; 32(2):2574-2589. PubMed ID: 38297783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperspectral lidar point cloud segmentation based on geometric and spectral information.
    Chen B; Shi S; Sun J; Gong W; Yang J; Du L; Guo K; Wang B; Chen B
    Opt Express; 2019 Aug; 27(17):24043-24059. PubMed ID: 31510299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications.
    Padmanabhan P; Zhang C; Charbon E
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data.
    Altmann Y; Ren X; McCarthy A; Buller GS; McLaughlin S
    IEEE Trans Image Process; 2016 May; 25(5):1935-46. PubMed ID: 26886984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclist Orientation Estimation Using LiDAR Data.
    Chang H; Gu Y; Goncharenko I; Hsu LT; Premachandra C
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations.
    Marais WJ; Holz RE; Hu YH; Kuehn RE; Eloranta EE; Willett RM
    Appl Opt; 2016 Oct; 55(29):8316-8334. PubMed ID: 27828081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data.
    Nie S; Wang C; Xi X; Luo S; Li G; Tian J; Wang H
    Opt Express; 2018 May; 26(10):A520-A540. PubMed ID: 29801258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Normal Estimation for 3D LiDAR Point Clouds in Urban Environments.
    Zhao R; Pang M; Liu C; Zhang Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30871057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on the Depth Image Reconstruction Algorithm Using the Two-Dimensional Kaniadakis Entropy Threshold.
    Yang X; Sun J; Ma L; Zhou X; Lu W; Li S
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D modelling method and application to a digital campus by fusing point cloud data and image data.
    Yuanyuan FENG; Hao LI; Chaokui LI; Jun CHEN
    Heliyon; 2024 Sep; 10(17):e36529. PubMed ID: 39281640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the utilization of novel spectral laser scanning for three-dimensional classification of vegetation elements.
    Li Z; Schaefer M; Strahler A; Schaaf C; Jupp D
    Interface Focus; 2018 Apr; 8(2):20170039. PubMed ID: 29503720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Improved DBSCAN Method for LiDAR Data Segmentation with Automatic Eps Estimation.
    Wang C; Ji M; Wang J; Wen W; Li T; Sun Y
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.