BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37475233)

  • 1. Compact and efficient 1064 nm up-conversion atmospheric lidar.
    Chen Q; Mao S; Yin Z; Yi Y; Li X; Wang A; Wang X
    Opt Express; 2023 Jul; 31(15):23931-23943. PubMed ID: 37475233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.
    Mei L; Brydegaard M
    Opt Express; 2015 Nov; 23(24):A1613-28. PubMed ID: 26698808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1064 nm rotational Raman polarization lidar for profiling aerosol and cloud characteristics.
    Wang L; Yin Z; Lu T; Yi Y; Dong X; Dai Y; Bu Z; Chen Y; Wang X
    Opt Express; 2024 Apr; 32(9):14963-14977. PubMed ID: 38859159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols.
    Kong Z; Ma T; Chen K; Gong Z; Mei L
    Appl Opt; 2019 Nov; 58(31):8612-8621. PubMed ID: 31873345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating random errors due to shot noise in backscatter lidar observations.
    Liu Z; Hunt W; Vaughan M; Hostetler C; McGill M; Powell K; Winker D; Hu Y
    Appl Opt; 2006 Jun; 45(18):4437-47. PubMed ID: 16778954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of amplified spontaneous emission noise for an all-fiber coaxial aerosol lidar with different single-photon detectors.
    Qiang W; Yang B; Shang X; Wang C; Xue X; Chen T
    Opt Express; 2022 Jun; 30(13):23187-23197. PubMed ID: 36225004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection.
    Sun G; Qin L; Hou Z; Jing X; He F; Tan F; Zhang S
    Opt Express; 2018 Mar; 26(6):7423-7436. PubMed ID: 29609297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upgraded Three-Wavelength Lidar for Real-Time Observations of Volcanic Aerosol Optical and Microphysical Properties at Etna (Italy): Calibration Procedures and Measurement Tests.
    Manzo M; Aiesi G; Boselli A; Consoli S; Damiano R; Di Donfrancesco G; Saraceno B; Scollo S
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact all-fiber quantum-inspired LiDAR with over 100 dB noise rejection and single photon sensitivity.
    Liu H; Qin C; Papangelakis G; Iu ML; Helmy AS
    Nat Commun; 2023 Sep; 14(1):5344. PubMed ID: 37660136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer.
    Xia H; Shangguan M; Wang C; Shentu G; Qiu J; Zhang Q; Dou X; Pan J
    Opt Lett; 2016 Nov; 41(22):5218-5221. PubMed ID: 27842097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New methods of data calibration for high power-aperture lidar.
    Guan S; Yang G; Chang Q; Cheng X; Yang Y; Gong S; Wang J
    Opt Express; 2013 Mar; 21(6):7768-85. PubMed ID: 23546158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simplified calculations for accuracy of a lidar dial system to measure atmospheric H2O vapor and temperature.
    Braun WC
    Appl Opt; 1985 Jan; 24(1):109-17. PubMed ID: 18216911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabry-Perot etalon-based ultraviolet trifrequency high-spectral-resolution lidar for wind, temperature, and aerosol measurements from 0.2 to 35  km altitude.
    Shen F; Xie C; Qiu C; Wang B
    Appl Opt; 2018 Nov; 57(31):9328-9340. PubMed ID: 30461973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing up-conversion single-photon detectors for quantum key distribution.
    Yao N; Yao Q; Xie XP; Liu Y; Xu P; Fang W; Zheng MY; Fan J; Zhang Q; Tong L; Pan JW
    Opt Express; 2020 Aug; 28(17):25123-25133. PubMed ID: 32907041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backscattering measurements of atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species.
    Ben-David A
    Appl Opt; 1999 Apr; 38(12):2616-24. PubMed ID: 18319835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameter Optimization and Development of Mini Infrared Lidar for Atmospheric Three-Dimensional Detection.
    Kuang Z; Liu D; Wu D; Wang Z; Li C; Deng Q
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies.
    Mei L; Kong Z; Guan P
    Opt Express; 2018 Mar; 26(6):A260-A274. PubMed ID: 29609357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range micro-pulse aerosol lidar at 1.5  μm with an upconversion single-photon detector.
    Xia H; Shentu G; Shangguan M; Xia X; Jia X; Wang C; Zhang J; Pelc JS; Fejer MM; Zhang Q; Dou X; Pan JW
    Opt Lett; 2015 Apr; 40(7):1579-82. PubMed ID: 25831389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Langley mobile ozone lidar: ozone and aerosol atmospheric profiling for air quality research.
    De Young R; Carrion W; Ganoe R; Pliutau D; Gronoff G; Berkoff T; Kuang S
    Appl Opt; 2017 Jan; 56(3):721-730. PubMed ID: 28157936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman-shifted eye-safe aerosol lidar.
    Mayor SD; Spuler SM
    Appl Opt; 2004 Jul; 43(19):3915-24. PubMed ID: 15250558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.