These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37475233)

  • 21. High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles.
    Hair JW; Caldwell LM; Krueger DA; She CY
    Appl Opt; 2001 Oct; 40(30):5280-94. PubMed ID: 18364809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterodyne Doppler 1-microm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence.
    Chan KP; Killinger DK; Sugimoto N
    Appl Opt; 1991 Jun; 30(18):2617-27. PubMed ID: 20700251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Remote sensing oil in water with an all-fiber underwater single-photon Raman lidar.
    Shangguan M; Yang Z; Shangguan M; Lin Z; Liao Z; Guo Y; Liu C
    Appl Opt; 2023 Jul; 62(19):5301-5305. PubMed ID: 37707235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High performance planar germanium-on-silicon single-photon avalanche diode detectors.
    Vines P; Kuzmenko K; Kirdoda J; Dumas DCS; Mirza MM; Millar RW; Paul DJ; Buller GS
    Nat Commun; 2019 Mar; 10(1):1086. PubMed ID: 30842439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths.
    Sun X; Abshire JB; Beck JD; Mitra P; Reiff K; Yang G
    Opt Express; 2017 Jul; 25(14):16589-16602. PubMed ID: 28789161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved algorithm for retrieving aerosol optical properties based on multi-wavelength Raman lidar.
    Mao S; Yin Z; Wang L; Yi Y; Wang A; Bu Z; Chen Y; Zhao Y; Müller D; Wang X
    Opt Express; 2023 Sep; 31(19):30040-30065. PubMed ID: 37710556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Dual-wavelength Mie lidar observations of tropospheric aerosols].
    Chi RL; Wu DC; Liu B; Zhou J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1468-72. PubMed ID: 19810510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere.
    Hua D; Uchida M; Kobayashi T
    Appl Opt; 2005 Mar; 44(7):1315-22. PubMed ID: 15765712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Upconversion detector for range-resolved DIAL measurement of atmospheric CH
    Meng L; Fix A; Wirth M; Høgstedt L; Tidemand-Lichtenberg P; Pedersen C; Rodrigo PJ
    Opt Express; 2018 Feb; 26(4):3850-3860. PubMed ID: 29475363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Comparative Analysis of Aerosol Optical Coefficients and Their Associated Errors Retrieved from Pure-Rotational and Vibro-Rotational Raman Lidar Signals.
    Zenteno-Hernández JA; Comerón A; Rodríguez-Gómez A; Muñoz-Porcar C; D'Amico G; Sicard M
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of a high-spectral-resolution lidar for atmospheric temperature measurement down to the near ground.
    Zang Z; Shen X; Zheng Z; Zhang Y; Zhou Y; Wang N; Wu L; Liu D
    Appl Opt; 2019 Dec; 58(35):9651-9661. PubMed ID: 31873565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compact and lightweight 1.5
    Yu C; Qiu J; Xia H; Dou X; Zhang J; Pan JW
    Rev Sci Instrum; 2018 Oct; 89(10):103106. PubMed ID: 30399898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical system design for a hyperspectral imaging lidar using supercontinuum laser and its preliminary performance.
    Qian L; Wu D; Zhou X; Zhong L; Wei W; Wang Y; Shi S; Song S; Gong W; Liu D
    Opt Express; 2021 May; 29(11):17542-17553. PubMed ID: 34154295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical ranging performance model and range walk error correction for photon-counting lidars with multiple detectors.
    Ma Y; Li S; Zhang W; Zhang Z; Liu R; Wang XH
    Opt Express; 2018 Jun; 26(12):15924-15934. PubMed ID: 30114846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mie lidar observations of lower tropospheric aerosols and clouds.
    Veerabuthiran S; Razdan AK; Jindal MK; Dubey DK; Sharma RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 84(1):32-6. PubMed ID: 21975046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pseudo-random modulation continuous-wave lidar for the measurements of mesopause region sodium density.
    Li F; Li T; Fang X; Tian B; Dou X
    Opt Express; 2021 Jan; 29(2):1932-1944. PubMed ID: 33726397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal iodine absorption line applied for spaceborne high spectral resolution lidar.
    Dong J; Liu J; Bi D; Ma X; Zhu X; Zhu X; Chen W
    Appl Opt; 2018 Jul; 57(19):5413-5419. PubMed ID: 30117841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-way single-photon-level frequency conversion between 852 nm and 1560 nm for connecting cesium D2 line with the telecom C-band.
    Zhang K; He J; Wang J
    Opt Express; 2020 Sep; 28(19):27785-27796. PubMed ID: 32988064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micro-pulse polarization lidar at 1.5  μm using a single superconducting nanowire single-photon detector.
    Qiu J; Xia H; Shangguan M; Dou X; Li M; Wang C; Shang X; Lin S; Liu J
    Opt Lett; 2017 Nov; 42(21):4454-4457. PubMed ID: 29088186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Entropy-Based Anti-Noise Method for Reducing Ranging Error in Photon Counting Lidar.
    Huang M; Zhang Z; Xie J; Li J; Zhao Y
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.