These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37475255)

  • 1. High-velocity measurement method in dual-frequency laser interference tracker based on beam expander and acousto-optic modulator.
    Feng T; Cui C; Li J; Zhou W; Dong D; Zhang Z; Wnag G; Qiu Q; Wang S
    Opt Express; 2023 Jul; 31(15):24230-24242. PubMed ID: 37475255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel laser tracking measurement system based on the position sensitive detector.
    Liu J; Zhang F; Kudreyko A; Ren W; Yang H
    Math Biosci Eng; 2023 Jan; 20(1):572-586. PubMed ID: 36650779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-zero beam drift laser tracking and measurement system with two-stage compression structures.
    Feng T; Cui C; Li J; Zhou W; Wang G; Dong D; Zhang Z; Qiu Q; Wang S
    Appl Opt; 2023 Jun; 62(16):4342-4348. PubMed ID: 37706926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic Guidance Method for Laser Tracker Based on Rotary-Laser Scanning Angle Measurement.
    Yang L; Pan Y; Lin J; Liu Y; Shang Y; Yang S; Cao H
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32727122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser frequency shift up to 5 GHz with a high-efficiency 12-pass 350-MHz acousto-optic modulator.
    Zhou C; He C; Yan ST; Ji YH; Zhou L; Wang J; Zhan MS
    Rev Sci Instrum; 2020 Mar; 91(3):033201. PubMed ID: 32259991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All acousto-optic modulator laser system for a 12 m fountain-type dual-species atom interferometer.
    He C; Yan S; Zhou L; Barthwal S; Xu R; Zhou C; Ji Y; Wang Q; Hou Z; Wang J; Zhan M
    Appl Opt; 2021 Jun; 60(17):5258-5265. PubMed ID: 34143096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental demonstration of remote, passive acousto-optic sensing.
    Antonelli L; Blackmon F
    J Acoust Soc Am; 2004 Dec; 116(6):3393-403. PubMed ID: 15658691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurement of the sound velocity in seawater based on the pulsed acousto-optic effect between the frequency comb and the ultrasonic pulse.
    Xue B; Wang Z; Zhang K; Zhang H; Chen Y; Jia L; Wu H; Zhai J
    Opt Express; 2018 Aug; 26(17):21849-21860. PubMed ID: 30130888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration method of a laser beam based on discrete point interpolation for 3D precision measurement.
    Kang J; Wu B; Sun Z; Wang J
    Opt Express; 2020 Sep; 28(19):27588-27599. PubMed ID: 32988049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a double-pass shear mode acousto-optic modulator.
    Chang CH; Heilmann RK; Schattenburg ML; Glenn P
    Rev Sci Instrum; 2008 Mar; 79(3):033104. PubMed ID: 18376994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distance and Velocity Measurement of Coherent Lidar Based on Chirp Pulse Compression.
    Yang J; Zhao B; Liu B
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31137481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision laser automatic tracking system.
    Lucy RF; Peters CJ; McGann EJ; Lang KT
    Appl Opt; 1966 Apr; 5(4):517-24. PubMed ID: 20048888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microchip Nd:YAG dual-frequency laser interferometer for displacement measurement.
    Chen H; Zhang S
    Opt Express; 2021 Feb; 29(4):6248-6256. PubMed ID: 33726150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective star tracking method based on optical flow analysis for star trackers.
    Sun T; Xing F; Wang X; Li J; Wei M; You Z
    Appl Opt; 2016 Dec; 55(36):10335-10340. PubMed ID: 28059260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acousto-optic frequency shifted comb laser-based micro-Doppler detection for moving target identification.
    Ding Y; Wu B; Shen Y
    J Opt Soc Am A Opt Image Sci Vis; 2021 Jun; 38(6):844-854. PubMed ID: 34143154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-thousandth-level laser power stabilization based on optical feedback from a well-designed high-split-ratio and nonpolarized beam splitter.
    Jie W; Guangyao H; Guochao W; Yaning W; Mei H; Qixue L; Lingxiao Z; Xinghui L; Shuhua Y; Jun Y
    Appl Opt; 2021 Sep; 60(25):7798-7803. PubMed ID: 34613253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct measurement of the sound velocity in water based on the acousto-optic signal.
    Li C; Xue B; Yang Z
    Appl Opt; 2021 Mar; 60(8):2455-2464. PubMed ID: 33690347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optoelectronic oscillator for a measurement of acoustic velocity in acousto-optic device.
    Lee CH; Yim SH
    Opt Express; 2014 Jun; 22(11):13634-40. PubMed ID: 24921557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of laser intensity noise over 1 MHz band for single atom trapping.
    Wang Y; Wang K; Fenton EF; Lin YW; Ni KK; Hood JD
    Opt Express; 2020 Oct; 28(21):31209-31215. PubMed ID: 33115099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An on-board surgical tracking and video augmentation system for C-arm image guidance.
    Reaungamornrat S; Otake Y; Uneri A; Schafer S; Mirota DJ; Nithiananthan S; Stayman JW; Kleinszig G; Khanna AJ; Taylor RH; Siewerdsen JH
    Int J Comput Assist Radiol Surg; 2012 Sep; 7(5):647-65. PubMed ID: 22539008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.