These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37475272)

  • 1. Excellent predictive-performances of photonic reservoir computers for chaotic time-series using the fusion-prediction approach.
    Zhong D; Hou P; Zhang J; Deng W; Wang T; Chen Y; Wu Q
    Opt Express; 2023 Jul; 31(15):24453-24468. PubMed ID: 37475272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep optical reservoir computing and chaotic synchronization predictions based on the cascade coupled optically pumped spin-VCSELs.
    Zhong D; Zhao K; Xu Z; Hu Y; Deng W; Hou P; Zhang J; Zhang J
    Opt Express; 2022 Sep; 30(20):36209-36233. PubMed ID: 36258555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate separation of mixed high-dimension optical-chaotic signals using optical reservoir computing based on optically pumped VCSELs.
    Zhong D; Hu Y; Zhao K; Deng W; Hou P; Zhang J
    Opt Express; 2022 Oct; 30(22):39561-39581. PubMed ID: 36298905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical cascaded reservoir computing for realization of dual-channel high-speed OTDM chaotic secure communication via four optically pumped VCSEL.
    Zhong D; Zhang J; Deng W; Hou P; Wu Q; Chen Y; Wang T; Hu Y; Deng F
    Opt Express; 2023 Jun; 31(13):21367-21388. PubMed ID: 37381237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study.
    Shahi S; Fenton FH; Cherry EM
    Mach Learn Appl; 2022 Jun; 8():. PubMed ID: 35755176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise ranging for the multi-region by using multi-beam chaotic polarization components in the multiple parallel optically pumped spin-VCSELs with optical injection.
    Zhong D; Zeng N; Yang H; Xu Z; Hu Y; Zhao K
    Opt Express; 2021 Mar; 29(5):7809-7824. PubMed ID: 33726275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive learning of multi-channel isochronal chaotic synchronization by utilizing parallel optical reservoir computers based on three laterally coupled semiconductor lasers with delay-time feedback.
    Zhong D; Yang H; Xi J; Zeng N; Xu Z; Deng F
    Opt Express; 2021 Feb; 29(4):5279-5294. PubMed ID: 33726067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing quantum noise-induced reservoir computing for nonlinear and chaotic time series prediction.
    Fry D; Deshmukh A; Chen SY; Rastunkov V; Markov V
    Sci Rep; 2023 Nov; 13(1):19326. PubMed ID: 37935730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography.
    Antonik P; Gulina M; Pauwels J; Massar S
    Phys Rev E; 2018 Jul; 98(1-1):012215. PubMed ID: 30110744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel information processing by a reservoir computing system based on a VCSEL subject to double optical feedback and optical injection.
    Tan X; Hou Y; Wu Z; Xia G
    Opt Express; 2019 Sep; 27(18):26070-26079. PubMed ID: 31510467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forecasting the chaotic dynamics of external cavity semiconductor lasers.
    Kai C; Li P; Yang Y; Wang B; Alan Shore K; Wang Y
    Opt Lett; 2023 Mar; 48(5):1236-1239. PubMed ID: 36857263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of polarization-resolved wideband unpredictability-enhanced chaotic signals based on vertical-cavity surface-emitting lasers subject to chaotic optical injection.
    Chen JJ; Wu ZM; Tang X; Deng T; Fan L; Zhong ZQ; Xia GQ
    Opt Express; 2015 Mar; 23(6):7173-83. PubMed ID: 25837062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced performances of photonic reservoir computing using a semiconductor laser with random distributed optical feedback.
    Cai D; Huang Y; Yang Y; Zhou P; Li N
    Opt Lett; 2023 Dec; 48(24):6392-6395. PubMed ID: 38099756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaotic synchronization: a nonlinear predictive filtering approach.
    Kurian AP; Puthusserypady S
    Chaos; 2006 Mar; 16(1):013126. PubMed ID: 16599757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing echo state network size with controllability matrices.
    Whiteaker B; Gerstoft P
    Chaos; 2022 Jul; 32(7):073116. PubMed ID: 35907714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Optimization and Validation of Echo State Networks for learning chaotic dynamics.
    Racca A; Magri L
    Neural Netw; 2021 Oct; 142():252-268. PubMed ID: 34034072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of hyperchaotic, chaotic, and regular signals using single nonlinear node delay-based reservoir computers.
    Wenkack Liedji D; Talla Mbé JH; Kenne G
    Chaos; 2022 Dec; 32(12):123126. PubMed ID: 36587364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic approach for assessing the predictability of chaotic time series using reservoir computing.
    Khovanov IA
    Chaos; 2021 Aug; 31(8):083105. PubMed ID: 34470249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient optical reservoir computing for parallel data processing.
    Bu T; Zhang H; Kumar S; Jin M; Kumar P; Huang Y
    Opt Lett; 2022 Aug; 47(15):3784-3787. PubMed ID: 35913314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the likelihood of extreme events in an optically pumped spin-VCSEL via chaotic optical injection.
    Zeng Y; Huang Y; Zhou P; Mu P; Li N
    Opt Express; 2023 May; 31(10):16178-16191. PubMed ID: 37157702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.