These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37475374)

  • 1. Metal-free design of a multilayered metamaterial with chirped Bragg grating for enhanced radiative cooling.
    Osuna Ruiz D; Lezaun C; Torres-García AE; Beruete M
    Opt Express; 2023 Jul; 31(14):22698-22709. PubMed ID: 37475374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Daytime radiative cooler using porous TiO
    Zahir M; Benlattar M
    Appl Opt; 2020 Oct; 59(30):9400-9408. PubMed ID: 33104657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-Linked Porous Polymeric Coating without a Metal-Reflective Layer for Sub-Ambient Radiative Cooling.
    Son S; Liu Y; Chae D; Lee H
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57832-57839. PubMed ID: 33345542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable and Flexible Multi-Layer Prismatic Photonic Metamaterial Film for Efficient Daytime Radiative Cooling.
    Li W; Zhan H; Huang N; Ying Y; Yu J; Zheng J; Qiao L; Li J; Che S
    Small Methods; 2024 Jul; 8(7):e2301258. PubMed ID: 38148329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Example of metal-multi-dielectric-metal cooling metamaterial use in engineering thermal radiation.
    Wang D; Zhu Y; Fang C; He P; Ye Y
    Appl Opt; 2019 Sep; 58(26):7035-7041. PubMed ID: 31503972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly-Scattering Cellulose-Based Films for Radiative Cooling.
    Jaramillo-Fernandez J; Yang H; Schertel L; Whitworth GL; Garcia PD; Vignolini S; Sotomayor-Torres CM
    Adv Sci (Weinh); 2022 Mar; 9(8):e2104758. PubMed ID: 35038253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling.
    Zhai Y; Ma Y; David SN; Zhao D; Lou R; Tan G; Yang R; Yin X
    Science; 2017 Mar; 355(6329):1062-1066. PubMed ID: 28183998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Solar-Reflective Structures for Daytime Radiative Cooling under High Humidity.
    Zhong H; Zhang P; Li Y; Yang X; Zhao Y; Wang Z
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51409-51417. PubMed ID: 33147941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling.
    Rephaeli E; Raman A; Fan S
    Nano Lett; 2013 Apr; 13(4):1457-61. PubMed ID: 23461597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capped MIM metamaterial for ultra-broadband perfect absorbing and its application in radiative cooling.
    Wei B; Zhu H; Wu Q; Cai G; Liu Q
    Appl Opt; 2023 Jul; 62(21):5660-5665. PubMed ID: 37707182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Dielectric-Metal Multilayer Structure for Color-Preserving Radiative Cooling Window.
    Liu G; Chen S; Lin C
    ACS Omega; 2024 Jul; 9(28):30425-30435. PubMed ID: 39035978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of radiative cooler based on porous TiO
    Zahir M; Benlattar M
    Appl Opt; 2021 Jan; 60(2):445-451. PubMed ID: 33448976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.
    Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R
    Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective, angle-independent radiative cooler based on one-dimensional photonic crystal.
    Yuan H; Yang C; Zheng X; Mu W; Wang Z; Yuan W; Zhang Y; Chen C; Liu X; Shen W
    Opt Express; 2018 Oct; 26(21):27885-27893. PubMed ID: 30469846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive radiative cooling below ambient air temperature under direct sunlight.
    Raman AP; Anoma MA; Zhu L; Rephaeli E; Fan S
    Nature; 2014 Nov; 515(7528):540-4. PubMed ID: 25428501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Thin Polymer Coating as a Selective Thermal Emitter for Passive Daytime Radiative Cooling.
    Banik U; Agrawal A; Meddeb H; Sergeev O; Reininghaus N; Götz-Köhler M; Gehrke K; Stührenberg J; Vehse M; Sznajder M; Agert C
    ACS Appl Mater Interfaces; 2021 May; 13(20):24130-24137. PubMed ID: 33974398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiative Cooling: Principles, Progress, and Potentials.
    Hossain MM; Gu M
    Adv Sci (Weinh); 2016 Jul; 3(7):1500360. PubMed ID: 27812478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Nanoporous MgHPO
    Huang X; Li N; Wang J; Liu D; Xu J; Zhang Z; Zhong M
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2252-2258. PubMed ID: 31886998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multilayer Emitter Close to Ideal Solar Reflectance for Efficient Daytime Radiative Cooling.
    Zhu Y; Wang D; Fang C; He P; Ye YH
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31323830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.