These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37475389)

  • 1. Deep learning estimation of modified Zernike coefficients and recovery of point spread functions in turbulence.
    Siddik AB; Sandoval S; Voelz D; Boucheron LE; Varela L
    Opt Express; 2023 Jul; 31(14):22903-22913. PubMed ID: 37475389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of modified Zernike coefficients from turbulence-degraded multispectral imagery using deep learning.
    Siddik AB; Sandoval S; Voelz D; Boucheron LE; Varela L
    Appl Opt; 2024 Jun; 63(16):E28-E34. PubMed ID: 38856589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of wavefront distortion for wavefront sensorless adaptive optics based on deep learning.
    Li Y; Yue D; He Y
    Appl Opt; 2022 May; 61(14):4168-4176. PubMed ID: 36256094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning wavefront sensing.
    Nishizaki Y; Valdivia M; Horisaki R; Kitaguchi K; Saito M; Tanida J; Vera E
    Opt Express; 2019 Jan; 27(1):240-251. PubMed ID: 30645371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning-based lens wavefront aberration recovery.
    Chen L; Hu Y; Nie J; Xue T; Gu J
    Opt Express; 2024 May; 32(11):18931-18943. PubMed ID: 38859039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zernike coefficients from wavefront curvature data.
    Mahajan VN; Acosta E
    Appl Opt; 2020 Aug; 59(22):G120-G128. PubMed ID: 32749324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method of wavefront phase retrieval from wavefront curvature sensing using membrane modes.
    Xie X; Wang B; Wang H
    Appl Opt; 2022 Nov; 61(33):10043-10048. PubMed ID: 36606837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting the deep learning wavefront sensor for real-time applications [Invited].
    Vera E; Guzmán F; Weinberger C
    Appl Opt; 2021 Apr; 60(10):B119-B124. PubMed ID: 33798145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Object-independent image-based wavefront sensing approach using phase diversity images and deep learning.
    Xin Q; Ju G; Zhang C; Xu S
    Opt Express; 2019 Sep; 27(18):26102-26119. PubMed ID: 31510471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical method for the transformation of Zernike polynomial coefficients for scaled, rotated, and translated pupils.
    Li L; Zhang B; Xu Y; Wang D
    Appl Opt; 2018 Dec; 57(34):F22-F30. PubMed ID: 30645277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Goodness-of-prediction of Zernike polynomial fitting to corneal surfaces.
    Smolek MK; Klyce SD
    J Cataract Refract Surg; 2005 Dec; 31(12):2350-5. PubMed ID: 16473230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image based aberration retrieval using helical point spread functions.
    Berlich R; Stallinga S
    Appl Opt; 2020 Aug; 59(22):6557-6572. PubMed ID: 32749356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Improved Method of Measuring Wavefront Aberration Based on Image with Machine Learning in Free Space Optical Communication.
    Xu Y; He D; Wang Q; Guo H; Li Q; Xie Z; Huang Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended Nijboer-Zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system.
    Braat JJ; Dirksen P; Janssen AJ; van Haver S; van de Nes AS
    J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2635-50. PubMed ID: 16396023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orthonormal polynomials in wavefront analysis: error analysis.
    Dai GM; Mahajan VN
    Appl Opt; 2008 Jul; 47(19):3433-45. PubMed ID: 18594590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating a turbulent video affected by spatiotemporally varying blur and tilt using temporal cross correlation of intermodal Zernike coefficients.
    Maor O; Yitzhaky Y
    J Opt Soc Am A Opt Image Sci Vis; 2024 Jun; 41(6):B14-B31. PubMed ID: 38856400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects.
    Yang H; Soloviev O; Verhaegen M
    Opt Express; 2015 Sep; 23(19):24587-601. PubMed ID: 26406661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep residual learning for low-order wavefront sensing in high-contrast imaging systems.
    Allan G; Kang I; Douglas ES; Barbastathis G; Cahoy K
    Opt Express; 2020 Aug; 28(18):26267-26283. PubMed ID: 32906902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What should be done to the measured Zernike coefficients when conjugating the pupil and wavefront sensor planes with a 4f system: discussion.
    Arines J
    J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):437-439. PubMed ID: 33690475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of degraded image transmitting through ocean turbulence via deep learning.
    Chen Y; Liu X; Jiang J; Gao S; Liu Y; Jiang Y
    J Opt Soc Am A Opt Image Sci Vis; 2023 Dec; 40(12):2215-2222. PubMed ID: 38086030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.