These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 37475483)
1. Increasing the Photocatalytic Hydrogen Generation Activity of CdS Nanorods by Introducing Interfacial and Polarization Electric Fields. Qi Z; Chen J; Li Q; Wang N; Carabineiro SAC; Lv K Small; 2023 Nov; 19(46):e2303318. PubMed ID: 37475483 [TBL] [Abstract][Full Text] [Related]
2. A general strategy for the enhanced H An S; Zhang L; Ding X; Xue Y; Tian J; Qin Y; You J; Wang X; Zhang H J Colloid Interface Sci; 2024 Jun; 664():848-856. PubMed ID: 38493650 [TBL] [Abstract][Full Text] [Related]
3. Hierarchical Layered WS2 /Graphene-Modified CdS Nanorods for Efficient Photocatalytic Hydrogen Evolution. Xiang Q; Cheng F; Lang D ChemSusChem; 2016 May; 9(9):996-1002. PubMed ID: 27059296 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Spin-Polarized Electric Field Modulating p-Band Center on Ni-Doped CdS for Boosting Photocatalytic Hydrogen Evolution. Wu F; Zhang X; Wang L; Li G; Huang J; Song A; Meng A; Li Z Small; 2024 Jul; 20(27):e2309439. PubMed ID: 38267824 [TBL] [Abstract][Full Text] [Related]
5. Noble metal-free 0D-1D NiS Meng S; Cui Y; Wang H; Zheng X; Fu X; Chen S Dalton Trans; 2018 Sep; 47(36):12671-12683. PubMed ID: 30151533 [TBL] [Abstract][Full Text] [Related]
6. Amorphous Co₃O₄ modified CdS nanorods with enhanced visible-light photocatalytic H₂-production activity. Yuan J; Wen J; Gao Q; Chen S; Li J; Li X; Fang Y Dalton Trans; 2015 Jan; 44(4):1680-9. PubMed ID: 25438161 [TBL] [Abstract][Full Text] [Related]
7. Enhanced photocatalytic H Irfan RM; Tahir MH; Khan SA; Shaheen MA; Ahmed G; Iqbal S J Colloid Interface Sci; 2019 Dec; 557():1-9. PubMed ID: 31505332 [TBL] [Abstract][Full Text] [Related]
8. Ultrafast interfacial charge evolution of the Type-II cadmium Sulfide/Molybdenum disulfide heterostructure for photocatalytic hydrogen production. Liu H; Tan P; Liu Y; Zhai H; Du W; Liu X; Pan J J Colloid Interface Sci; 2022 Aug; 619():246-256. PubMed ID: 35395539 [TBL] [Abstract][Full Text] [Related]
9. Boosting CdS Photocatalytic Activity for Hydrogen Evolution in Formic Acid Solution by P Doping and MoS Liu J; Huang H; Ge C; Wang Z; Zhou X; Fang Y Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159906 [TBL] [Abstract][Full Text] [Related]
10. Ultrafast charge separation in a WC@C/CdS heterojunction enables efficient visible-light-driven hydrogen generation. Chen L; Chen F; Ying S; Liang R; Yan G; Wang X; Xia Y Dalton Trans; 2023 Jan; 52(2):290-296. PubMed ID: 36484709 [TBL] [Abstract][Full Text] [Related]
11. Heterostructured WS Reddy DA; Park H; Ma R; Kumar DP; Lim M; Kim TK ChemSusChem; 2017 Apr; 10(7):1563-1570. PubMed ID: 28121391 [TBL] [Abstract][Full Text] [Related]
12. Construction of organic-inorganic cadmium sulfide/diethylenetriamine hybrids for efficient photocatalytic hydrogen production. Lv J; Liu J; Zhang J; Dai K; Liang C; Wang Z; Zhu G J Colloid Interface Sci; 2018 Feb; 512():77-85. PubMed ID: 29054009 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional S-scheme heterojunction by integration of purple tungsten oxide nanowires and cadmium sulfide nanospheres for effective photocatalytic hydrogen generation. Liu T; Li Y; Lv Y; Qiu P; Xiong Y; Tian J J Colloid Interface Sci; 2023 Jun; 640():568-577. PubMed ID: 36878074 [TBL] [Abstract][Full Text] [Related]
14. Construction of a transition-metal sulfide heterojunction photocatalyst driven by a built-in electric field for efficient hydrogen evolution under visible light. Zhang W; Xu Q; Tang X; Jiang H; Shi J; Fominski V; Bai Y; Chen P; Zou J J Colloid Interface Sci; 2023 Nov; 649():325-333. PubMed ID: 37352563 [TBL] [Abstract][Full Text] [Related]
15. Approach of fermi level and electron-trap level in cadmium sulfide nanorods via molybdenum doping with enhanced carrier separation for boosted photocatalytic hydrogen production. Guo C; Tian K; Wang L; Liang F; Wang F; Chen D; Ning J; Zhong Y; Hu Y J Colloid Interface Sci; 2021 Feb; 583():661-671. PubMed ID: 33039863 [TBL] [Abstract][Full Text] [Related]
16. Controlled Growth and Bandstructure Properties of One Dimensional Cadmium Sulfide Nanorods for Visible Photocatalytic Hydrogen Evolution Reaction. Chava RK; Son N; Kim YS; Kang M Nanomaterials (Basel); 2020 Mar; 10(4):. PubMed ID: 32230877 [TBL] [Abstract][Full Text] [Related]
17. NiSe Du S; Li C; Lin X; Xu W; Huang X; Xu H; Fang P Chempluschem; 2019 Jul; 84(7):999-1010. PubMed ID: 31943982 [TBL] [Abstract][Full Text] [Related]
18. Zhou X; Fang Y; Cai X; Zhang S; Yang S; Wang H; Zhong X; Fang Y ACS Appl Mater Interfaces; 2020 May; 12(18):20579-20588. PubMed ID: 32272011 [TBL] [Abstract][Full Text] [Related]
19. Stable hydrogen generation from vermiculite sensitized by CdS quantum dot photocatalytic splitting of water under visible-light irradiation. Zhang J; Zhu W; Liu X Dalton Trans; 2014 Jun; 43(24):9296-302. PubMed ID: 24819860 [TBL] [Abstract][Full Text] [Related]
20. Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light. Yan Z; Sun Z; Liu X; Jia H; Du P Nanoscale; 2016 Feb; 8(8):4748-56. PubMed ID: 26862011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]