These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 37475569)
21. Enhancing Capacity Performance by Utilizing the Redox Chemistry of the Electrolyte in a Dual-Electrolyte Sodium-Ion Battery. Senthilkumar ST; Bae H; Han J; Kim Y Angew Chem Int Ed Engl; 2018 May; 57(19):5335-5339. PubMed ID: 29516600 [TBL] [Abstract][Full Text] [Related]
22. Aqueous colloid flow batteries with nano Prussian blue. Zhu D; Li L; Ji Y; Wang P J Colloid Interface Sci; 2025 Jan; 678(Pt A):88-97. PubMed ID: 39182389 [TBL] [Abstract][Full Text] [Related]
23. Molecular engineering of dihydroxyanthraquinone-based electrolytes for high-capacity aqueous organic redox flow batteries. Huang S; Zhang H; Salla M; Zhuang J; Zhi Y; Wang X; Wang Q Nat Commun; 2022 Aug; 13(1):4746. PubMed ID: 35961966 [TBL] [Abstract][Full Text] [Related]
24. A Highly Stable, Capacity Dense Carboxylate Viologen Anolyte towards Long-Duration Energy Storage. Wu W; Wang AP; Luo J; Liu TL Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216662. PubMed ID: 36526569 [TBL] [Abstract][Full Text] [Related]
25. The Quest for Stable Potassium-Ion Battery Chemistry. Wu X; Qiu S; Liu Y; Xu Y; Jian Z; Yang J; Ji X; Liu J Adv Mater; 2022 Feb; 34(5):e2106876. PubMed ID: 34648671 [TBL] [Abstract][Full Text] [Related]
26. Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive. Liang Z; Tian F; Yang G; Wang C Nat Commun; 2023 Jun; 14(1):3591. PubMed ID: 37328496 [TBL] [Abstract][Full Text] [Related]
27. Resolving Deactivation of Low-Spin Fe Sites by Redistributing Electron Density toward High-Energy Sodium Storage. Jiang M; Hou Z; Ma H; Wang J; Hua W; Ren L; Zhang Y; Wei C; Kang F; Wang JG Nano Lett; 2023 Nov; 23(22):10423-10431. PubMed ID: 37955521 [TBL] [Abstract][Full Text] [Related]
29. Bidirectional Confined Redox Catalysis Manipulated Quasi-Solid Iodine Conversion for Shuttle-Free Solid-State Zn-I Wang M; Ma J; Zhang H; Fu L; Li X; Lu K Small; 2024 Mar; 20(12):e2307021. PubMed ID: 37940629 [TBL] [Abstract][Full Text] [Related]
30. A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage. Xie C; Duan Y; Xu W; Zhang H; Li X Angew Chem Int Ed Engl; 2017 Nov; 56(47):14953-14957. PubMed ID: 28980361 [TBL] [Abstract][Full Text] [Related]
31. Efficient AcFc-[Fe Rahaman Mazumder MM; Islam R; Khan MAR; Anis-Ul-Haque KM; Rahman MM Chem Asian J; 2023 Jan; 18(1):e202201025. PubMed ID: 36354369 [TBL] [Abstract][Full Text] [Related]
32. Investigation of Iron(III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte. Mitchell NH; Elgrishi N J Phys Chem C Nanomater Interfaces; 2023 Jun; 127(23):10938-10946. PubMed ID: 37342204 [TBL] [Abstract][Full Text] [Related]
33. A pH-Neutral, Aqueous Redox Flow Battery with a 3600-Cycle Lifetime: Micellization-Enabled High Stability and Crossover Suppression. Chai J; Wang X; Lashgari A; Williams CK; Jiang JJ ChemSusChem; 2020 Aug; 13(16):4069-4077. PubMed ID: 32658334 [TBL] [Abstract][Full Text] [Related]
34. Liquid Nitrobenzene-Based Anolyte Materials for High-Current and -Energy-Density Nonaqueous Redox Flow Batteries. Xu D; Zhang C; Zhen Y; Li Y ACS Appl Mater Interfaces; 2021 Aug; 13(30):35579-35584. PubMed ID: 34297540 [TBL] [Abstract][Full Text] [Related]
35. Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System. Wu X; Qi Y; Hong JJ; Li Z; Hernandez AS; Ji X Angew Chem Int Ed Engl; 2017 Oct; 56(42):13026-13030. PubMed ID: 28859240 [TBL] [Abstract][Full Text] [Related]
36. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries. Walser-Kuntz R; Yan Y; Sigman M; Sanford MS Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181 [TBL] [Abstract][Full Text] [Related]
37. Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes. Navalpotro P; Sierra N; Trujillo C; Montes I; Palma J; Marcilla R ACS Appl Mater Interfaces; 2018 Dec; 10(48):41246-41256. PubMed ID: 30398052 [TBL] [Abstract][Full Text] [Related]
38. Redox Catalysis Promoted Activation of Sulfur Redox Chemistry for Energy-Dense Flexible Solid-State Zn-S Battery. Zhang H; Shang Z; Luo G; Jiao S; Cao R; Chen Q; Lu K ACS Nano; 2022 May; 16(5):7344-7351. PubMed ID: 34889091 [TBL] [Abstract][Full Text] [Related]
39. Six-Electron-Redox Iodine Electrodes for High-Energy Aqueous Batteries. Bi S; Wang H; Zhang Y; Yang M; Li Q; Tian J; Niu Z Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312982. PubMed ID: 37861096 [TBL] [Abstract][Full Text] [Related]
40. POM Anolyte for All-Anion Redox Flow Batteries with High Capacity Retention and Coulombic Efficiency at Mild pH. Yang L; Hao Y; Lin J; Li K; Luo S; Lei J; Han Y; Yuan R; Liu G; Ren B; Chen J Adv Mater; 2022 Feb; 34(7):e2107425. PubMed ID: 34866255 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]