These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37475603)
1. De novo drug design based on patient gene expression profiles via deep learning. Yamanaka C; Uki S; Kaitoh K; Iwata M; Yamanishi Y Mol Inform; 2023 Aug; 42(8-9):e2300064. PubMed ID: 37475603 [TBL] [Abstract][Full Text] [Related]
3. Application of Generative Autoencoder in De Novo Molecular Design. Blaschke T; Olivecrona M; Engkvist O; Bajorath J; Chen H Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29235269 [TBL] [Abstract][Full Text] [Related]
4. TRIOMPHE: Transcriptome-Based Inference and Generation of Molecules with Desired Phenotypes by Machine Learning. Kaitoh K; Yamanishi Y J Chem Inf Model; 2021 Sep; 61(9):4303-4320. PubMed ID: 34528432 [TBL] [Abstract][Full Text] [Related]
5. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers. Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054 [TBL] [Abstract][Full Text] [Related]
6. TransGEM: a molecule generation model based on Transformer with gene expression data. Liu Y; Yu H; Duan X; Zhang X; Cheng T; Jiang F; Tang H; Ruan Y; Zhang M; Zhang H; Zhang Q Bioinformatics; 2024 May; 40(5):. PubMed ID: 38632084 [TBL] [Abstract][Full Text] [Related]
7. Strategies for Design of Molecular Structures with a Desired Pharmacophore Using Deep Reinforcement Learning. Yoshimori A; Kawasaki E; Kanai C; Tasaka T Chem Pharm Bull (Tokyo); 2020; 68(3):227-233. PubMed ID: 32115529 [TBL] [Abstract][Full Text] [Related]
8. Drug repositioning targeting glutaminase reveals drug candidates for the treatment of Alzheimer's disease patients. Bayraktar A; Li X; Kim W; Zhang C; Turkez H; Shoaie S; Mardinoglu A J Transl Med; 2023 May; 21(1):332. PubMed ID: 37210557 [TBL] [Abstract][Full Text] [Related]
9. Deep learning prediction of chemical-induced dose-dependent and context-specific multiplex phenotype responses and its application to personalized alzheimer's disease drug repurposing. Wu Y; Liu Q; Qiu Y; Xie L PLoS Comput Biol; 2022 Aug; 18(8):e1010367. PubMed ID: 35951653 [TBL] [Abstract][Full Text] [Related]
10. A pharmacophore-guided deep learning approach for bioactive molecular generation. Zhu H; Zhou R; Cao D; Tang J; Li M Nat Commun; 2023 Oct; 14(1):6234. PubMed ID: 37803000 [TBL] [Abstract][Full Text] [Related]
11. PaccMann Born J; Manica M; Oskooei A; Cadow J; Markert G; Rodríguez Martínez M iScience; 2021 Apr; 24(4):102269. PubMed ID: 33851095 [TBL] [Abstract][Full Text] [Related]
12. Deep Generative Models for Molecular Science. Jørgensen PB; Schmidt MN; Winther O Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29405647 [TBL] [Abstract][Full Text] [Related]
13. Molecular generative model based on conditional variational autoencoder for de novo molecular design. Lim J; Ryu S; Kim JW; Kim WY J Cheminform; 2018 Jul; 10(1):31. PubMed ID: 29995272 [TBL] [Abstract][Full Text] [Related]
14. Structure-Based Drug Design with a Deep Hierarchical Generative Model. Weller JA; Rohs R J Chem Inf Model; 2024 Aug; 64(16):6450-6463. PubMed ID: 39058534 [TBL] [Abstract][Full Text] [Related]
15. Exploring matrix factorization techniques for significant genes identification of Alzheimer's disease microarray gene expression data. Kong W; Mou X; Hu X BMC Bioinformatics; 2011; 12 Suppl 5(Suppl 5):S7. PubMed ID: 21989140 [TBL] [Abstract][Full Text] [Related]
16. Exploring Low-Toxicity Chemical Space with Deep Learning for Molecular Generation. Yang Y; Wu Z; Yao X; Kang Y; Hou T; Hsieh CY; Liu H J Chem Inf Model; 2022 Jul; 62(13):3191-3199. PubMed ID: 35713712 [TBL] [Abstract][Full Text] [Related]
17. DNMG: Deep molecular generative model by fusion of 3D information for de novo drug design. Song T; Ren Y; Wang S; Han P; Wang L; Li X; Rodriguez-Patón A Methods; 2023 Mar; 211():10-22. PubMed ID: 36764588 [TBL] [Abstract][Full Text] [Related]
18. De novo generation of dual-target ligands using adversarial training and reinforcement learning. Lu F; Li M; Min X; Li C; Zeng X Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410338 [TBL] [Abstract][Full Text] [Related]
19. Deep generative model for therapeutic targets using transcriptomic disease-associated data-USP7 case study. Pereira T; Abbasi M; Oliveira RI; Guedes RA; Salvador JAR; Arrais JP Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35789255 [TBL] [Abstract][Full Text] [Related]
20. Molecular substructure tree generative model for de novo drug design. Wang S; Song T; Zhang S; Jiang M; Wei Z; Li Z Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]